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Subspace Approach for the Design of Cosine-Modulated
Filter Banks with Linear-Phase Prototype Filter

Alfred Mertins

Abstract—In this correspondence, a method for designing perfect
reconstruction (PR) prototypes for paraunitary cosine-modulated filter
banks is presented. The design procedure is based on a subspace approach
that allows linear combinations of even-length linear-phase PR prototype
filters in such a way that the resulting filter is also a linear-phase PR
prototype. Within a given subspace, the weights of the optimal linear
combination can easily be computed via an eigenanalysis. The filter design
is carried out iteratively while the PR property is guaranteed throughout
the design process. No nonlinear optimization routine is needed. As
a special case, the proposed approach allows the design of discrete-
coefficient prototypes, which are of great interest for efficient hardware
implementations.

Index Terms—Cosine modulation, discrete coefficients, filter banks,
integer coefficients.

I. INTRODUCTION

Cosine-modulated filter banks are very popular in signal processing
because of their efficiency [1]–[9]. In this class of filter banks, all
analysis and synthesis filters are modulated versions of a single
prototype. The implementation of the complete filter bank depicted in
Fig. 1 only requires the implementation of polyphase components of
the prototype and of the modulation, which itself can be efficiently
realized via FFT’s. Cosine-modulated filter banks can be designed
as pseudo QMF banks [2], paraunitary filter banks [3]–[6], and
as biorthogonal filter banks allowing a low reconstruction delay
[7]–[10]. In this correspondence, only linear-phase prototypes are
considered.

The quality of the filter bank for a given application mainly depends
on the properties of the prototype. For the design of the prototype,
which will be denoted asP (z), we can follow various strategies.
A method that structurally guarantees the perfect reconstruction
(PR) property of the filter bank is the use of lattice factorizations
[11]. For this method, a good starting point is required because we
have to optimize angles in a cascade of lattices, and the relations
between the angles and the impulse response are highly nonlinear. A
second method that is typically less sensitive to the starting point
is the quadratic-constraint algorithm [12]. This method does not
inherently guarantee PR, but the PR requirements can be satisfied
with arbitrary accuracy. A simple but efficient iterative design method
for practically useful near PR prototypes was presented in [13]. This
method is based on the older pseudo-QMF ideas [2] rather than on the
PR constraints [3]–[5] so that on principle, only near PR prototypes
can be designed. A further method for designing near PR prototypes
was proposed in [14].

In this correspondence, a new design method is presented that, like
the lattice factorization, guarantees the PR property. The optimiza-
tion is performed iteratively by optimizing linear combinations of
impulse responses within suitable linear subspaces. Throughout the
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Fig. 1. Critically subsampled M-channel filter bank.

filter design process, no nonlinear optimization routine is required.
However, nonlinear optimization may be used in order to achieve
further improvements.

Filters with integer-valued coefficients are quite desirable because
they allow the efficient implementation of filter banks. The simplest
way to design such an integer prototype is to quantize the coefficients
of a given prototype. Clearly, when doing this, the PR property gets
lost, and we will need relatively many bits in order to achieve at
least an almost PR. An alternative is to realize the filter bank in
a lattice structure, which allows us to achieve PR of integer input
signals within a discrete implementation [15]. In this correspondence,
a different method is proposed that keeps the PR property throughout
the design process while dealing only with integers.

II. PARAUNITARY COSINE-MODULATED FILTER BANKS

In this correspondence, we regard the case where the number
of channelsM and the filter lengthL are even. Furthermore,
critical subsampling and a real-valued lowpass prototypep(n) are
considered.

If p(n) satisfies the symmetry conditionp(n) = p(L�n�1); n =
0; 1; � � � ; L=2�1 and if its polyphase componentsPk(z) satisfy the
condition

~Pk(z)Pk(z) + ~PM+k(z)PM+k(z) = 1

k = 0; 1; � � � ;
M

2
� 1 (1)

then the filter bank is paraunitary, that is, the filter bank has
the PR property, and moreover, it provides a unitary transform
[3]–[5], [11]. Herein, the polyphase componentsPk(z) are defined
as Pk(z) = m�1

n=0
z�npk(n), where pk(n) = p(2nM + k),

k = 0; 1; � � � ; 2M � 1. Terms with a tilde accent in (1) denote
~Pk(z) = Pk(z

�1).
When a prototype has a high stopband attenuation, it will give

good performance in a wide range of applications. Therefore, the
classical way to measure the quality of a prototype filter is to measure
the stopband attenuation or stopband energy. Here, we follow this
classical idea and formulate the optimization problem using the
Rayleigh quotient

C(ppp) =
pppTVVV sppp

pppTppp

!
=min : (2)

The vector ppp contains the unknown filter coefficientsppp =
[p(0); p(1); � � � ; p(L�1)]T , andVVV s is a weighting matrix defined by

pppTVVV sppp =
stopband

Gs(!)jP (!)j
2 d! (3)

whereGs(!) is a non-negative weighting function, andP (!) is the
Fourier transform ofp(n). ForGs(!) = 1 within the stopband, the
criterion (2) states that we are seeking filters with minimum stopband
energy under the restriction that the energy of the prototype is fixed.
Unfortunately, the optimal solution to (2) will not satisfy condition
(1); therefore, (1) must be included in the optimization process.

III. SUBSPACE APPROACH

Let us consider the optimality criterion (2), and let us assume that
we have a set of basis vectors for the design of our optimal prototype
p(n), that is, let us assume that we can writeppp in the following
form, where the matrixFFF contains the basis, and� contains the
coefficients to be optimized:ppp = F�F�F�. If all linear combinations of
the columns of matrixFFF lead to a PR prototypeppp, we can formulate
the optimization problem as

C(���) =
���TUUU s���

���TUUUp���

!
=min; where UUU s = FFF TVVV sFFF

UUUp =FFF TFFF (4)

and we can solve (4) for the optimal��� in an unrestricted way.
Thus, the solution is given by the eigenvector� corresponding to
the minimum eigenvalue� of the generalized eigenvalue problem

UUU s��� = �UUUp���: (5)

Let us now focus on the linear combination of two prototype filters
A(z) and B(z)

P (z) = �1 A(z) + �2B(z): (6)

Here, we have

��� =
�1
�2

; FFF =
a(0) a(1) � � � a(L� 1)
b(0) b(1) � � � b(L� 1)

T

(7)

wherea(n) andb(n) are the impulse responses of the systemsA(z)
andB(z), respectively. In order to allow the subspace approach, let
us require that for all�1; �2 2 IR (except for�1 = �2 = 0), the
resulting filterP (z) satisfies the PR condition (1) up to some scaling
factor 
, which has to be independent ofk. This means

~Pk(z)Pk(z) + ~PM+k(z)PM+k(z) = 
; 
 6= 0

k = 0; 1; � � � ;
M

2
� 1 (8)

where

Pk(z) = �1 Ak(z) + �2Bk(z): (9)

Since the choices[�1; �2] = [1; 0] and [�1; �2] = [0; 1] are valid,
the filtersA(z) andB(z) must satisfy the PR condition (1) at least
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up to a scaling factor in order to allowP (z) to fulfill (8). Scaling
of A(z) andB(z) does not change the subspace spanned by these
filters; therefore, we may require that the PR conditions

~Ak(z)Ak(z) + ~AM+k(z)AM+k(z) = 1 (10)
~Bk(z)Bk(z)+ ~BM+k(z)BM+k(z) = 1 (11)

are satisfied fork = 0; 1; � � � ; M=2� 1. Given the filtersA(z) and
B(z), we can look for the best linear combination of these filters in
the sense of (4). As we will see below, we cannot find the global
optimum this way, but we can use this procedure iteratively. We will
return to this point in Section IV.

Construction ofBk(z): Let Ak(z) be the polyphase components
of a given prototype that satisfies (10). In order to construct filters
Bk(z) in such a way that (8) and (11) are satisfied, we combine (8)
and (9). This leads to

~Ak(z)Bk(z) + Ak(z) ~Bk(z) + ~AM+k(z)BM+k(z)

+ AM+k(z) ~BM+k(z) = c = const. (12)

for k = 0; 1; � � � ; M=2 � 1, wherec = (
 � �21 � �22)=(�1�2).
GivenAk(z) andAM+k(z), (12) is nothing but an underdetermined
linear set of equations forBk(z) and BM+k(z). This means that
we can choose any solution to (12) forc 6= 0 and add any further
solution from the nullspace (c = 0). SinceBk(z) = Ak(z) is a
simple (but valid) solution to (12), it becomes clear that we should
look for solutions in the nullspace only

~Ak(z)Bk(z) +Ak(z) ~Bk(z) + ~AM+k(z)BM+k(z)

+AM+k(z) ~BM+k(z) = 0; k = 0; 1; � � � ;
M

2
� 1: (13)

Equation (13) can be interpreted as a set of orthogonality relations.
Note that (13) also implies orthogonality of the complete impulse
responsesa(n) and b(n) in the classical sense

L�1

n=0

a(n)b(n) = 0: (14)

Filters Bk(z) satisfying (13) are

Bk(z) =Ck(z)AM+k(z)

BM+k(z) = � ~Ck(z)Ak(z) (15)

and

Bk(z) =Dk(z) ~AM+k(z)

BM+k(z) = �Dk(z) ~Ak(z): (16)

Among these solutions, we are interested in finding the ones that also
satisfy (11) and lead to linear-phase filtersB(z). These requirements
restrict the systemsCk(z) andDk(z) to be simple delays. Thus, we
have solutions of the form

Bk(z) = � z�` AM+k(z); BM+k(z) = �z` Ak(z)

k = 0; 1; � � � ;
M

2
� 1 (17)

and

Bk(z) = � z�` z�(m�1) ~AM+k(z)

BM+k(z) = � z�` z�(m�1) ~Ak(z)

k = 0; 1; � � � ;
M

2
� 1: (18)

By using the linear-phase property of the prototypes, the remaining
polyphase filters are derived asBk(z) = z�(m�1) ~B2M�1�k(z).

Dimensionality of the Subspace:We will now show that the sub-
space approach only allows the construction of 2-D subspaces with

Fig. 2. Convergence properties of a full search overB and a reduced search
overB0. ForM = 16, the full search overB is not shown in the plot because
one iteration step already requires 32 768 computations. The values of the
objective function are normalized on their initial values. As initial filter, the
ELT prototype [17] was used.

Fig. 3. Convergence properties. ForM = 8, the filter length has been
increased every 142 iterations by 16 taps. The initial values of the objective
function are as follows.M = 16, lazy prototype:234:33; M = 8, ELT:
7:94; M = 8, lazy prototype:230:7.

the property that any linear combination of the elements of the
subspace yields a PR prototype. For this, let us evaluate (12) for
two filtersU(z) andV (z) [instead ofA(z) andB(z)], whereU(z)
andV (z) are taken from (17) and (18). We have two cases:

• Uk(z) andVk(z) are taken either from (17) or from (18). Then,
the expression (12) becomes�(z` �` + z` �` ), where
`k and `k are the delays used in the construction ofUk(z)
andVk(z). Thus, (12) can only be satisfied forU(z) = �V (z).

• Uk(z) is taken from (17), andVk(z) is taken from (18) (or vice
versa). Evaluating the left-hand side of (12) then yields

z` �` �m+1 ~A2
M+k(z) + z` �` +m�1A2

M+k(z)

+ z�` �` �m+1 ~A2
k(z) + z` +` +m�1A2

k(z):

For a nontrivial FIR filterA(z), this expression cannot become a
constant.
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Fig. 4. Magnitude frequency responses of eight-channel filter banks with
32-tap filters.

TABLE I
QUALITY MEASUREC(ppp) FOR THE PROPOSEDMETHOD AND THE QCLS

METHOD FROM [12]. PARAMETERS: !s = �=M ;Gs(!) = 256=2�

TABLE II
PERFECT RECONSTRUCTIONPROTOTYPES FOR

FOUR-BAND FILTER BANKS WITH INTEGER COEFFICIENTS

An extension of the subspace approach from two to three di-
mensions requires the existence of an additional filter that satisfies
(12) with respect to bothA(z) andB(z). Since such a filter must
belong to the class defined by (17) and (18), and since two filters
constructed via (17) and (18) cannot satisfy (12), it turns out that such
an extension is impossible. The restriction to 2-D spaces also shows
that the subspace method cannot be complete. Thus, we cannot find
a set of basis vectors where all linear combinations of these vectors
yield PR prototypes (up to some scaling factor) and where all PR
prototypes satisfying (1) can be written as linear combinations of
these vectors.

Properties of the Solutions forB(z): In the construction of our
polyphase filtersBk(z), we have the choice to take the solution from
(17) or from (18), we can choose`k, and we can also choose the signs.
This means that (17) and (18) define an infinite number of impulse
responsesb(n). The most important ones are those for`k = 0 because
then, the filterB(z) has the same support asA(z). When optimizing
a prototype and having an initial filterA(z) that already has the final

TABLE III
PERFECT RECONSTRUCTIONPROTOTYPES FOR

EIGHT-BAND FILTER BANKS WITH INTEGER COEFFICIENTS

TABLE IV
PERFECT RECONSTRUCTIONPROTOTYPES FOR

16-BAND FILTER BANKS WITH INTEGER COEFFICIENTS

length,`k = 0 will be the only choice. A choicèk 6= 0 allows us
to increase the filter length, which is useful when the initial filter is
shorter than the final one. However, since the filter length rapidly
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Fig. 5. Impulse responses of the eight-channel prototypes from Table II.

increases when repeatedly using optimization steps with`k 6= 0, the
optimization will typically involve several steps with̀k = 0.

For the choicè k = 0, the total number of impulse responsesb(n)
defined by (17) and (18) is2M . One half of this set can be generated
from the other half by a simple sign change so that we can maximally
expect2M�1 filters b(n) with different frequency responses. Such a
set of2M�1 filters will be denoted asB. All elements ofB satisfy
the PR condition (11), and they are orthogonal toa(n) in the sense of
(13). During optimization, we will have to find the filterb(n), which
[together with the givena(n)] leads to the best filterP (z). In order
to reduce the number of filters that have to be tested, it is useful to
find a linearly independent subset ofB, which is denoted asB0, and
to test only the filters inB0. Such a subsetB0 is given in (19), shown
at the bottom of this page. Each row vector stands for a possible
collection [B0(z); B1(z); B2(z); B3(z); � � �]. It is easily verified
that no further linearly independent solution exists for`k = 0 so that
the total number of linearly independent solutions isM . If different
choices are considered for`k, the number increases accordingly.

IV. OPTIMIZATION PROCEDURE, CONVERGENCE, AND RESULTS

In this section, the design of prototypes with infinite-precision
coefficients is presented. Modifications that allow the design of
discrete-coefficient prototypes will be discussed in Section V.

The filter-design method consists of the following steps:

1) Given a PR prototypea(n), we construct the set of filtersb(n)
from (17) and (18). Alternatively, we construct a subset that
contains linearly independent filters.

2) For all filters designed in Step 1, we solve the optimization
problem (4) withFFF and� according to (7). Then, we select the
best candidate. Note that due to (10), (11), and the orthogonality
relation (14),UUUp becomes theM -fold of the identity matrix.
Further note that the eigenvalue problem (5), which gives the
solution to (4), only contains matrices of size 2� 2 so that
simple analytical solutions for the eigenvalues and eigenvectors
can be provided.

3) The optimal linear combination ofa(n) and the selectedb(n)
is taken as a new initial solution for Step 1. The process is
continued until the incremental improvement of the objective
function becomes insignificant. Convergence to a minimum
is ensured by the fact that each step reduces the objective
function.

The computation effort for a full search over all solutions of
(17) and (18) grows exponentially with the number of channels. As
mentioned above, an alternative is to search only over a linearly
independent subset of the solutions. For`k = 0, Fig. 2 shows the
value of the objective functionC(�) versus the computational cost for
a full and a reduced search. Herein, the cost is measured in terms of
the number of eigenvalue problems (5) that have to be solved. We see
that with respect to the computation effort, a search over the subsetB0

converges more rapidly than the full search overB. The final results
are equal in both cases. Thus, for largeM , only a reduced search
should be performed. A second view of the convergence properties
is provided in Fig. 3. For the initialization of the filter design process,
the “lazy prototype” and the ELT prototype [17], respectively, were
used. The lazy prototype, which only hasM subsequent coefficient
being equal to one, simply provides the polyphase transform of the
input signal. As we see in Fig. 3, the design process rapidly converges
from both initializations. The difference in the convergence behavior
for M = 8 andM = 16 is explained by the fact that forM = 16,
only a reduced search was performed.

In order to show how longer filters can be designed from shorter
ones, the filter length of the eight-band prototype in Fig. 3 was
increased every 142 iterations by applying a step with`k = 1 for all
polyphase components. As we see, the objective function decreases
with increasing filter length, but forL > 6M , the improvement
becomes insignificant. However, for short filters, the convergence
properties are excellent.

From the theoretical point of view, a proof of completeness (in the
sense that every possible solution can be reached via the proposed
searches) would be desirable. However, even if completeness could be
shown, it may not be expected that the global optimum can be reached

�AM (z); AM+1(z); AM+2(z); � � �

z�(m�1) ~AM (z); AM+1(z); AM+2(z); � � �

AM (z); �AM+1(z); AM+2(z); � � �

AM (z); z�(m�1) ~AM+1(z); AM+2(z); � � �

AM (z); AM+1(z); �AM+2(z); � � �

AM (z); AM+1(z); z�(m�1) ~AM+2(z); � � �
...

...

(19)
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Fig. 6. Frequency responses for the eight-channel prototypes from Table II. For comparison purposes, the frequency response of MALVAR’S ELT prototype
[17] is depicted with dotted lines.

via a series of optimal intermediate steps. As with other methods, such
as lattice factorizations, the whole series of design steps would have
to be considered as one parameterization, and the optimization would
have to be based on nonlinear optimization routines.

Design Examples:We consider an eight-channel filter bank, where
the filter length is chosen asL = 32. The ELT prototype [17] was

taken as an initial solution, and the filter was then optimized according
to (2) for the stopband edge at!s = �=M and a constant weight
within the stopband. Fig. 4 shows the magnitude frequency responses
of the initial and the optimized filter. The same optimal filter is found
with the method from [12]. For longer filters (L > 4M ), the results
for the method from [12] were better than for the proposed algorithm;
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see Table I. This means that the main advantage of the proposed
technique lies in the fact that integer-valued PR prototypes can be
designed (see the next section).

Relation to Lifting Schemes:Somehow, the design procedure pro-
posed in this correspondence has similarities with the lifting scheme,
which was originally proposed for the successive design of wavelets
from the polyphase transform [18]. However, the essential difference
between both methods is that the subspace approach considers
linear combinations of impulse responses, whereas the lifting scheme
considers factorizations. Although lifting is complete in the sense that
every prototype for a cosine-modulated filter bank can be constructed
via lifting [10], the way of combining given polyphase components to
new ones is completely different. For example, a linear combination
of the form A

(new)
k

(z) = �1Ak(z) + �2 ~AM+k(z); A
(new)
M+k (z) =

�1AM+k(z)��2 ~Ak(z) is not easily realized with a few lifting steps.

V. PROTOTYPES WITH DISCRETE COEFFICIENTS

One remarkable feature of the relations (17) and (18) is the
fact that the prototypeB(z) essentially has the same coefficients
as the prototypeA(z); the filter B(z) is composed from flipped
and/or sign-changed polyphase components of the filterA(z). This
means that if we start the design with a PR filterA(z) having
only integer coefficients, and if we also use integer weights�1
and�2 in (9), then the linear combination ofA(z) andB(z) will
have integer coefficients. The simplest choice for the initial filter
with integer coefficients is the lazy filter. In order to design PR
filters with integer coefficients, we still need to quantize the weights:
�0

k := round(� �k); k = 1; 2; � 2 IR.
Filter optimizations have been carried out forM = 4; 8; and

16 bands while starting from the lazy filter. The filter lengths were
restricted to beL = 4M . Various prototype coefficients with different
wordlengths are listed in Tables II–IV. Because of symmetry, only
the first 2M coefficients are listed.

In order to illustrate the design steps and the influence of the
wordlengths, the impulse responses for the eight-band case from
Table III are depicted in Fig. 5, and the corresponding frequency
responses are shown in Fig. 6. For example, the filter (c) with coeffi-
cients in the range[�1; 8] has an acceptable frequency response for
image coding purposes, while the implementation cost is extremely
low.

Other Discrete Implementation:As mentioned before, prototypes
can be realized using lattices that allow quantization of the rotation
angles without loss of the PR property [11], [17]. However, since
finite-wordlength implementations of rotations require the quanti-
zation of sets like (sin �; cos �) or (cos �; tan �), rather than the
quantization of the rotation angle� itself, the lattice realizations
are restricted to certain discrete-realizable rotation angles if PR is
desired [15], [19]. The major problem that arises with such discrete
implementations is in achieving equal scaling for all polyphase
filters. Overall, the answer to the question of which implementation
performs best in practice highly depends on the prototype, the
coefficient precision, and the type of hardware realization for which
the filter is designed (general-purpose DSP, VLSI with shift and add
architectures, etc.).

In addition to the discrete implementation of the polyphase filters,
a discrete realization of the modulation part of the filter bank may
also be desirable. This can be done by replacing the rotations being
involved in the computation of the cosine-modulation through�
rotations, as proposed in [19] for the DCT-II.

VI. CONCLUSIONS

In this paper, a novel method for the design of prototypes for
PR cosine-modulated filter banks has been presented. The approach

is iterative, and the PR property is preserved throughout the opti-
mization. Each iteration step consists of the computation of optimal
linear combinations of impulse responses. The linear combinations
have to be performed for filters from suitable linear subspaces. The
computational cost of the filter optimization is extremely low. The
most important feature of the new design method is the fact that it
allows the design of PR prototypes with integer-valued coefficients,
which are desirable for efficient hardware realizations.
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