172 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

Frame Analysis for Biorthogonal
Cosine-Modulated Filterbanks

Alfred Merting Member, IEEE

Abstract—This paper addresses the efficient computation of ~ Frame analysis is a powerful tool to assess the properties of
frame bounds for cosine-modulated filterbanks. We derive explicit filterbanks and transforms [12]-[16]. Frames for general, over-
expressions for the eigenvalues of the frame operator that can be sampled filterbanks have been studied in [14] and [15]. The spe-

ﬁﬁi;lgeiog?pcuﬁgg:g;n ;23 ?rzcét%tg\?ven:aprgg?nhga?;?g:n rﬂg;egés'elgre] cial case of cosine-modulated filterbanks has been addressed in

or odd, and the oversampling factor is supposed to be an integer. [12], where the aim was mainly to design filterbanks with tight
The analysis of low-delay, biorthogonal filterbanks shows that frames (i.e., filterbanks that provide unitary transforms). In [16],
prototypes solely designed to minimize the stopband energy may frame analysis was used to assess the properties of biorthogonal
lead to wide open frames and, thus, to an undesirable numerical two-channel filterbanks for image compression purposes where

behavior. Because the computational cost of determining the th f tizati ise is to b timated in th b
frame bounds with the proposed method is very low, we can € energy or quantization NoISe 1510 be estmated In the Stib=

directly use the bounds during prototype optimization and obtain band domain.
prototypes with minimum stopband energy under the condition of In this paper, we use frame analysis to assess and design

fixed frame bounds. Various design examples are presented. biorthogonal, cosine-modulated filterbanks. Based on the gen-
Index Terms—Biorthogonal filterbanks, cosine-modulated filter-  €ral methods proposed in [14] for determining frame bounds
banks, frame analysis, low delay. through an eigenanalysis of a frequency-dependent matrix,

which is known as the frame operator, we derive new expres-
sions for the frame bounds that are very easy and efficient to
compute. In particular, we will derive explicit expressions for
OSINE-MODULATED filterbanks are very popular inthe eigenvalues of the frame operator. For the special case of
signal processing because of their low design and impleritically sampled filterbanks, we will present an even more
mentation costs. The first designs of perfect reconstruction (Pé&fjicient method that finds the bounds directly from Fourier
cosine-modulated filterbanks were carried out to yield paraumiansforms of the autocorrelation sequences of the prototype’s
tary filterbanks [1]-[4]. Paraunitary filterbanks use linear-phagslyphase components. Because the computational cost of
prototypes, and the delay of the entire analysis/synthesis sysig#termining the frame bounds is very low, we can directly use
is determined by the length of the prototype. More recentlghe bounds during prototype optimization and obtain prototypes
biorthogonal, low-delay filterbanks have been introducegith minimum stopband energy under the condition of fixed
[5]-[11]. Such designs are attractive because they allow tframe bounds.
choice of the overall system delay independently of the lengths
of the_ _filters invqlved. A coIIection_ of general_ PR conditions\ Notation
for critical sampling can be found in [10]. Desigh methods for ) _ _
finite impulse response (FIR) oversampled filterbanks were Matrices and vectors are printed in boldfatg: and.J, de-
considered in [9] and [12]. Infinite impulse response (IIR}Ote theM x M identity and counter identity matrices, respec-
filterbanks were designed in [11]. |\_/ely. The term diag] dgnotes the formation qf a diagonal ma-
The quality criterion commonly used in the design of botHIX. Il means the Euclidean norm o_faveth’)rs the set of all
paraunitary and biorthogonal filterbanks is the minimization ¢ft€gersR is the set of all real, and is the set of all complex
the stopband energy of the prototype [8]-[11]. Design examp@gmbers.(-} anq [-] mean roun_dmg to the next Iarger/smaller
have shown that for a fixed delay the prototypes for biorthogori@f€ger, respectively. The asteriskienotes convolution.
filterbanks can have much higher stopband attenuation than the
ones for paraunitary filterbanks. However, examples also show
that for biorthogonal filterbanks, the good properties of a pro-
totype do not necessarily translate into good properties of theln this paper, we consider both critically sampled and over-
modulated filters. In this paper, we will study this phenomenasampled cosine-modulated filterbanks. Fig. 1 shows the filter-
using frame analysis. bank in direct form, wheré(n) andgy(n), k =0,...,M —1

. . , denote the impulse responses of the analysis and synthesis fil-
Manuscript received September 14, 2001; revised August 7, 2002. The agso- . . f
ciate editor coordinating the review of this paper and approving itforpublicatigﬁrfi reSpeC“VEIyM 1S the number of phannels,'am\ﬂ is the
was Dr. Helmut Boelcskei. ratio between the sampling rate at the input and in the subbands.
The author is with the School of Electrical, Computer, and Telecommunjys may be even or odd, but the oversampling fadtoe M/N
cation Engineering, University of Wollongong, Wollongong, Australia (e-mail: . . . .
mertins@uow.edu.au). is restricted to be an integer. The following type of modulation

Digital Object Identifier 10.1109/TSP.2002.806572 is used to derive the analysis and synthesis filters from proto-
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Fig. 1. M-band analysis and synthesis filterbanks with sampling rate fétio

types with impulse responsgén) andq(n) RE)(2) :% |:z—(2L—1)JNQ2L (22D Ty
L — )
1
hi(n) =i p(n) c1,k(n) 2L Qo o (ZPE) N,
1 s INQ(2P1)IN] CF. (5)
gr(n) =—= q(n) c2,k(n) 1) _ _
VL In (4) and (5),C, andC> areM x 2M cosine modulation ma-
where trices given by
2 [Cilg., = c1k(n), [Colyonr—1—pn = c2,6(n)  (6)
Cl,k(n) =\ 75 .
M ) with & = 0,1,...,M — 1 andn = 0,1,...,2M — 1. The
% cos | = <k + 1) (n _ B) +(_1)kf matricesP;,(z?L) are defined as (7), shown at the bottom of
| M 2 2 4] the page, wheré;(z), j = 0,1,...,2M — 1 are the type-1
(n) 2 polyphase component of the analysis prototype given by
c2.k(N) =\/ 7=
M : Pi(z) =3 pi(0) 2~ pi(0) =p(2M +5). (8)
X cos | = lc—l—1 _D —(—1)"'z @3] ¢
M 2 2 4|

The matrices), (z) have the same definition a(z), only
D is the overall delay of the analysis/synthesis system andwith P, (z) replaced by the type-1 polyphase componéhté:)
assumed to be of the form of the synthesis prototype. The matric®s andC> have the

properties

D =2sM +2M — 1 ®3)

o . (=)°In + I ©)
wheres is an integer. Note that this is the most commonly used 0

delay because it does not put severe restrictions on the progo-

type’s coefficients. For example, it automatically occurs in the
case of paraunitary cosine-modulated filterbanks. For other de="¢, — ¢T'¢, = [ ]
lays, some of the prototype’s polyphase components have to de- 10)
grade to simple delays or even zero sequences; see [10]. The (L) (L)

range forn in (1) depends on the filter lengths, which are, irW'th the polyphase matriceB'™’(z) and "™ (z), the perfect

general, independent of the del&y reconstruction conditions can be formulated as

For further analysis, it is convenient to describe the filterbank R ()EWD) (z) = z=2L-2L-1 .
via its analysis and synthesis polyphase matrEé@(z) and ) i o
R™)(2). The superscript™) denotes the oversampling factorExPanding (11) using (4), (), and (9) and replacing?” by
Given the filters in (1) with the modulation according to (2), thé& I the expression (?btalned yields the following PR conditions
matricesEX)(z) and R™Y (z) can be expressed as [9] on the prototype [9]:

0

clc, =
21 { (=1)*Iy — Jos

Iy + (-1)°Jd
0

0
I]\[ — (—I)SJM

11)

2L—-1

2L
1 z_I:g’(Z(zz)L) Z Pryen(2) Qenr—1—p—en(z) = Lz™°
1
E(L)(Z) :—LCl . (4) =0 N
Z—(ZL—l)PZL_l(ZZL) k=0,..., {5—‘ -1. (12
Py (2°) =diag[Pin (—2%F), Pang1(—=2°0), .., Panpn—1(—220)]

k=0,1,...,2L—1 @)
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Note that (12) shows the PR conditions on the prototypd.for Having almost paraunitary filterbanks is particularly useful
times oversampled, biorthogonal, cosine-modulated filterbankssource coding where operational rate-distortion algorithms
with the delay in (3). In the special case of paraunitary filteare to be applied in the subband domain, and exact paraunitary-
banks, a linear-phase (symmetric) prototype is required, and tiess cannot be achieved because of other requirements such as
same prototype is to be used for analysis and synthesis. Edirgear phase or low delay. For almost paraunitary filterbanks, the
tion (12) then leads to the following conditions on paraunitargquared reconstruction error at the filterbank output is close to
prototypes [9]: the squared quantization error in the subband domain. Thus, a
bit allocation optimized for minimum error in the subbands will
4 then be near-optimal for the final output signal. With frame anal-
Z Prven(2) Praen(277) = L ysis, it is possible to exactly determine the maximum deviation
=0 between the errors in the subband domain and at the filterbank

k=0,..., [_w —1. (13) output. Withe(n) denoting the output error angl(n) denoting

the quantization error in bandat time indexn, the following

inequality holds [16]:

2L-1

I1l. FRAME ANALYSIS M—-1 oo oo
/ 2 2
A. Definition and Meaning of Frames A Z Z lax(n)]” < Z ()]
k=0 n=—o00 n=-—o00
Lethym,k=0,1,...,M —1, m € Z be vectors containing e

the filter coefficientsh,(mM — n), and letz be a vector con- < 9
taining the input samples(n). Assuming thate € ¢%(Z), the <B Y Y e
following inequality can be stated:

(16)

k=0 n=—oc

Vel o In (16), itis assumed that the entire error energy is finite, which
A||:1:||2 < Z Z \(z, by >|2 <B quz Vz € 12(2) is typically the case for real-world, time-limited signals.
o meTe (14) B. Computation of Frame Bounds for Cosine-Modulated
with someAd,B € R.If A > 0 andB < oo, the valuesA Filterbanks

and B are called frame bounds, and the &gt,, is called a  aAgorithms for the computation of the frame bounds have
frame for/?(Z). The frame bounds themselves can be seen@sen described in [14] and [16]. We follow the method in [14]
indicators of the numerical properties of the filterbank. If thgecause it can be most easily applied to cosine-modulated filter-
sethy. ., constitutes a frame, then there exists a correspondiggnks. We will first look at the analysis filterbank and derive ex-
PR synthesis filterbank with filterg, ,, that also constitutes a pjicit expressions for the eigenvalues of the frame operator. In a
frame with frame bounds’ and B’ such that second step, we will consider the frame bounds for the synthesis

Mol oo filterbank and relate them to those of the analysis bank. Then, we
A |z|? < Z Z |<$7gk_m>|2 < B'||z||* Yz € (*(2). yvill deriygasimplified method for computing the frame bounds

’ in the critically sampled case.

(15) 1) Frame Bounds for the Analysis Filterbanket
Under certain conditions, the bounds are related’as 1/B
andB’ = 1/A. We will return to this point at the end of Sec- 5(z) = P () ED(z) (17)
tion 111-B2.

In the special case that = B, the frame is called a tight h E(L) is th iugate of th Vsi voh
frame. If A = B = 1, the filterbank is paraunitary, and (14) re-W ere (2) s the paraconjugate of the analysis polyphase

, ix E©) is. BV (2) = [ED (2)H _
duces toy M=l yo (@, hi)? = |22 1 A= B = 1 matrix E'™(z), that is,E" " (z) = [E"(2)]" for |z| = 1.

and the filt];é:rgankﬁggmically sampled, then the vecthys,, Because cosine-mog&lﬁ';\ted filterbanks have real-valued coeffi-
' omedcients, we may writds " (z) = [E®)(2~1)]”. Now, let us de-

form an orthonormal basis fd?(Z), and the above-mentione _ i
formula for energy preservation becomes Parseval's identifiPte the eigenvalues &(c’) asiy(w), k = 0,1,..., N — 1.
Further discussion of the effects of the frame bounds on the i€ frame boundsl and are given by [12], [14]

terbank properties (including the case wherex B) can be

k=0 m=—o0

found in [14]: A= oSl o M)
In general, the smaller the ratids/A and B’/ A’, the better
the numerical properties of the filterbank will be. /A and B = €ss Sup Ak(w) (18)

B'/A’ are close to one, then the filterbank can be regarded as w€[0,2m), k=0,1,....N -1

being almost paraunitary, and the assumption of energy presgfere the symbolsdss inf” and "ess sup” denote the essential
vation may be used without much error when relating the energyimum and supremum, respectively. The masix’~) repre-

of the_ subband signals to the energy of the input or output sigR@hts the frame operator for the analysis filterbank.

of a filterbank. In the following, we derive explicit expressions for the frame

INote that in [14], the filters were normalized to have unit energy so that tigﬂOUHQS, usin_g the particular St'_’LfCtureE@L)(Z) giV_en in (4)-_
frames were obtained with = B = M/N. Inserting (4) into (17) and rewriting the expression obtained
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using (10) yields expressed 4524), shown at the bottom of the page. Note that
(24) provides a straightforward method for determining the
—or L1 eigenvalues from the polyphase components of the prototype.
Z Py( )+ (=1 i The required terms, 1, (e’*) and S, y_,_,(e’*) are simply

the discrete-time Fourier transforms of sequenggs(n) and
%.N_1_k(n), which can be obtained as follows. Let

¢k(n):{( D pk(gy), if ez 5)

0, otherwise.

2L-1

X Z AP (2T INP(2PE) — (—1)°
=0

X ZZLilizePQL_l_[(ZizL)JNPL_M(ZzL). (19)
Then

Because the matriceB,(z2r) are diagonal, it turns out that !

S(z) has nonzero elements on its diagonal and anti-diagonal Z Prten(=n) * drpen(n)  (26)
only. Let us writeS(z) as
and we have (27), shown at the bottom of the next page. For FIR
S(z) = diag[So.0(2), ..., Sn—1,nv-1(2)] prototypes, an FFT algorithm and zero padding can be used in
+diag [SO No1(2)se s Sh_10(2)] In. (20) Practice to obtaiy. x(e/) andSy y_;_(e’) from sp.(n)
ands; y_;_;(n) in an efficient manner on a fine frequency

From (7) and (19), we find that grid. A discussion of the discretization error is given in Ap-
pendix B.
2L-1 Odd N: For odd N, the formulation (20) withSy, (=)
Sieoi( Z Pryen(=272") Poyen(=2°%)  (21) and S, ,(2) according to (21) and (22) is still valid.

However, because the diagonal and anti-diagon&l(ef meet
the center, there is a row and column containing a single
and we have (22), shown at the bottom of the page. To S|mpllr{)]6 g g

nzero entryS = SN S . .
the further discussion, we first look at the case wheris even, e o(2) = Sinya),ing2)(2) + LN/QJVU\/?J( 2)
Thus, the eigenvalues ofS(e’~) are given by (24)
and then, we outline the changes for qild
w for k. = 0,1,...,|N/2] — 1, and the extra value
EvenN: Because of the special structure $fe’>), its (w) = (j ).
eigenvectors have only two nonzero entries, and we can redué@”2J ¢

Relation to the Work in [12]:Frame bounds for over-

the task to that of analyzing the eigenvalues of theZmatrices
yzing 9 sampled cosine-modulated filterbanks were also considered

. Si e (e5) AN in [12]. There, an alternative expression for the frame bounds
Sk(e) =g (7)  Sn1r N1k jw):| of cosine-modulated filterbanks with integer oversampling
N-1-kk eN N-1-k,N-1-k{E was derived, which involves modulated versions of the pro-
k:071,...77 — 1. (23) totype’'s polyphase components. It was shown that under

certain symmetry conditions, which are satisfied by symmetric
A more detailed explanation is given in Appendix APrototypes, the frame bounds can be obtained as suprema and
From (21) and (22)' one can infer that the termg]ﬁma of certain functions of frequency, which play the same
Skx(e?) are real-valued and thatS) y_,_,(e/*) role as the eigenvaluesy;y x(w) in (24). However, (24)
are symmetric, ie., Spr(e’) = 5 k(e @) and is not limited to symmetric prototypes and gives, therefore,

/ 1 ! i
Skﬂ'—l—k(e]w) - SN 1-k, k(e ]w) Hence, the two eigen- 2The ceiling operation for the index has been introduced in view of the case
values A\ (w) and )\[N/Q]Jrk( w) of Sy(e?*) can be explicitly whereX is odd.

(=1)°
Shov-ros(2) =

-1 (—1)°

X ZL_l_%P(L—l—/)N+k(_Z_2L)PZN+N—1—k(_Z2L) -7
=0
-1

X T Por_gN k(=2 ) PN en—1-k(—27T). (22)
=0

1
)\k;(N/z]Jrk(w):E(Sk,k(ej )+ Sn—1—k,N—1-k(€7*))

1 - ; :
£ 5/ (S r(6) = Syorme o1 (e3)) 4 4IS) 1 (0P (24)
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a more general formulation of the eigenvalues of the franweill cause an eigenvalu@ v o (w) = T.(€7*) # A|n/2)(w).
operator. For example, (24) also allows the frame analydi¢hether or not this leads to bound$and B’ that are different
of low-delay filterbanks, which generally require nonsymfrom A andB depends on the prototype in use.

metric prototypes. When imposing symmetry of the form  Relationship to Dual Framesin [14], synthesis filter-
Pi(z) = +2 7 Py 1 x(271), the anti-diagonal oS(z) banks of the form

vanishes, and (24) reducesitp(w) = S x(e’*), which is an . . -1

alternative expression to the one given in [12]. R(z) = [E(Z)E(Z)} E(2) (33)

2) Frame Bounds for the Synthesis Filterbariket . .
were analyzed. There, it was shown that these particular syn-

T(z) = RY (Z)R(L) (2). (28) thesisfilters are associated with the inverse frame operator of the
analysis filterbank and that they lead to a dual frame with frame
The frame boundsl’ and B’ are given by boundsA’ = 1/B andB’ = 1/A. However, for the oversam-
, _ pled case, the synthesis filterbank is not unique, and there are
= we[o,%fsszlél,{,“_w_l Or(w) infinitely many sets of synthesis filters that provide PR with the
B - ess sup B (w) (29) same delayD. In general, the filters itR(z) are not modulated
we[0,27), k=0,1,...,N—1 versions of a single prototype and cannot be as efficiently im-
) plemented as modulated filterbanks. Exceptions are for critical
wheref) (w) are the eigenvalues @f(e’*). sampling and for cases where the analysis prototype exhibits
Carrying out the same derivation as for the analysis sidertain symmetries [12]. The synthesis filters considered in the
yields present paper, on the other hand, are explicitly designed to be

i modulated versions of a prototype. TherefaRéz) and R(z)
T(z) = |ag[T0,0(z.), w1 v-1(2)] represent, in general, different PR synthesis filterbanks and lead
—diag[Tj x_1(2), ..., Tx_10(2)] v (30) to different frame bounds. In the critically sampled case, how-
ever,R(z) andR(z) are equal up to a delay and yield the same
where the termsT}, x(z) and Ty y_;_,(z) are defined ac- ¢ .o l()f))unds () g P y y
cording t0Sy. . (2) andS’y, v —1—k (%), respectively, wittQy.(z) 3) Frame Bounds for Critical Samplingtn the following,

instead off’ (z). Thus,S(z) andT'(z) have the same structure,q jerive a simplified method for computing the frame bounds
but different signs for the anti-diagonal terms.

. . in the critically sampled case with evéd and use of the same
Frame Bounds for Equal Analysis and Synthesis Prot

. : rototype on the analysis and synthesis sides. For this, we ana-
types: In the following, we consider the use of the same prot Jze the producty (w)Ax/2.44 () With L = 1 and, thus, with
type for analysis and synthesis, resultindlin:(z) = Sk x(2) N = M. This yielrds ' '

andT’y n—1-k(2) = S"k,n—1—1(2). If N is even, we then have

to analyze the submatrices Ne(@)Aar/24k(w) = Sk,k<ejw) SM,l,kyM,l,k(eiw)
Tr(e’*) Skk () =S n—1-k(e) ] _|Sllc,M—1—k(ejw)|2~ (34)
k € = i ’ i
_SEV—l—k,k](\fj ) Sn-1-kn-1-k(¢7) Inserting (21) and (22) into (34) and evoking the PR condition
k=0,1,..., 5 - 1 31) (12)with P(z) = Q(z) yields
which have the same eigenvaluesage?*) in (23). This means A(@)Aarj24r(w) = V. (35)
that This interesting relationship immediately implies that
A=A, B =B (32) AB=1 (36)
for evenN and equal prototypes on the analysis and synthesis critically sampled PR cosine-modulated filterbanks that are
sides. ' derived from a single prototype because for a fixed M/2,
If N is odd, we have to analyze the submatri@@se’”) the eigenvalue\,(w) will take on its infimum at the same fre-
for k = 0,1,...,[N/2] — 1 and a single tern¥.(e’) = quency where\ (17,241 (w) has its supremum. Note that a sim-

SN/, 1N/21 (€7) = S| /9y |ny2) (¢7) in the center of'(z).  ilar condition has been mentioned in [16] for two-channel filter-
Becausel,.(e?“) will, in general, be different frons.(e/*), it  banks.

-1
_1)¢
S;,Nflfk(n) :( L) Z 6(71 =+ L—1-— 2£) * ¢(L_1_Z)N+k(—n) * (/)gf\rJrN,l,k(n)
=0
(—1) L=
-7 6(n+L—1=20)xdor—1-o)N+k(—1) * QN4 N-1—k(1)- (27)
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Equation (35) is also the key to further simplification of the
computation of the frame bounds. From (24) and (35), itfollows 0

that -5

Av/2pn(w) = Ap(w) + 1/ AR (w) — 1 (37) |

with :;Z
Ap(w) = % (S () + Sar—1—kmr—1-x(e)) . (38) T |

Inserting (21) into (38) with: = e/ under consideration of
Py(—e29) Py(—e3%) = | Py(e3 <) ? yields

_40 |
1 . .
Ar(w) =5 [1Pe (/P2 4 | Pag (e Bt 2 - /\/\MWW\ |
+|PA,[_1_k(ej(2‘“+’r))|2 0 005 01 015 02 025 03 035 04 045 05
(2w (2 normalized frequency
+ |Panr—1-k(e B (39)

@)

For further simplification, we define

A (w) = Ay (“’;”) )

which is the discrete-time Fourier transform of the sequence _,,

1

ah(n) =3 [pe(n) # pi(=n) + parsa(m) x paan(-n)
+ pr—1-k(n) * prr—1—k(—n) -20
+ parvi—1-k(n) *p?M—l—k(_n)] (41) -251

Again, the termsA) (w) can be efficiently computed from  -30f

az(n) on a fine frequency grid using an FFT algorithm and . A M\ \ \ /\ \'

zero padding. An analysis of the discretization error of the M‘ ‘(‘ o )-\ ’W"\\ i “\m,,\ '

FFT method is given in Appendix B. The frame bounds finally -4 “‘“‘“ ’!"-\lﬁ“/‘}"‘m“' “é “ " . o

amount to normalized frequency

(b)
B=08+ ;32—1,14:%:;3—\/;32—1 (42) s

with 0

B = ess sup Al (w). (43) -
w€[0,7) k=0,1,...,M/2—1

IV. EXAMPLES

dB

In this section, we compare the performance of various low 20r

delay prototype designs for cosine-modulated filterbanks witt _o5
M = 8 channels and a delay @& = 15 taps. In all examples,
the same prototype was used for analysis and synthesis. Proi —3°

types were designed to minimize the stopband energy 35 ']Q ,/\ /‘ [

. b LAY ‘/‘ LA

jw ﬁ\“ﬂ ik m‘“"l It Y 'Mm
= |P(e’ )|2dw (44) % 0.0 \ 0.1 .15 0.2 .5 0.35 045 05

we normalized frequency
under the constraint (12). To ensure that (12) is satisfied, the ©
lifting structure of [17] was used. The stopband edge frequeney. 2. Normalized frequency responses of eight-channel filterbank. (a)
for the prototypes was chosenas = 7r/M. Prototype. (b) Analysis filters. (c) Synthesis filters. Parametérds: = 8,

Note that the objective function (44) is widely used in th& — 1> £» = 48. Prototype designed to minimize (44).

design of both paraunitary and biorthogonal filterbanks. The
assumption behind this is that the modulated filters in the fiproperties. However, as the following examples will show, this
terbank should have good properties as long’és) has good is not necessarily true for biorthogonal filterbanks.



178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

TABLE |
VALUES B, &, AND A FOR EIGHT-CHANNEL FILTERBANKS, DESIGNED TOMINIMIZE (44) FOR CRITICAL SAMPLING

s/D 0/15 1/31 2/ 47 3/63
L, | 32 ] 48 | 64 | 32 | 48 | 64 | 48 | 64 | 64
B | 261|327 365 |1.02|1.69 | 1.92 | 1.01 | 1.36 | 1.001
& |0.09]006| 005 | 006 | 001|001 0004|0005 | 0.002
A[dB] | 7.58 | 9.91 | 11.02 | 0.01 | 447 | 557 | 0.01 | 272 | 0.01

TABLE I
VALUES B, &, AND A FOR EIGHT-CHANNEL FILTERBANKS WITH D = 15, DESIGNED TOMINIMIZE (44) FOR CRITICAL SAMPLING UNDER THE
CONDITION OF FIXED FRAME BOUNDS

L, 32 48 64
B | 105] 1.1 |125] 15 [105[ 1.1 [125] 1.5 [ 1.05] 1.1 [1.25] 1.5
& |041]035[026|018]039 032023016039 |031 | 021014
A[dB] | 028]|069|179| 32| 0 | 0 |155[332| 0 |032]1.62]3.18

To design biorthogonal filterbanks with controlled framgassband amplification in any one of the bands and the lowest
bounds, we add the constraint local minimum in any of the passbands. If none of the passbands
B<pB. . (45) ;howsalocalminimgm,thaﬁ is setto zero. F_orthefilterbapk
— Tmax in Fig. 2, the value isA = 9.91 dB, which is a substantial
during optimization, whereB,,,.. is an arbitrary, predefined variation within the passband frequency responses.
upper bound for the actual frame bouBavith 1 < B < 0. The frame bounds for the above-considered filterbank
Due to (36), this implies thatl > 1/B,.x for the case of amount toA = 0.31 and B = 3.27, which means that the
critical sampling. For the constrained optimization, the Matladnergy of the input or output signal of the filterbank may be
routine fmincon has been used. different from the subband energy by a factor between 0.31
First, we look at designs using solely the objective functioand 3.27, depending on the actual signal. Thus, although the
(44). The filter lengths k) are chosen as 32, 48, and 64, antilterbank constitutes a frame and provides PR, it is not well
critical sampling is considered. An example for the frequenmuited for schemes that rely on the assumption that the subband
response of a prototype filter is given in Fig. 2(a). One can seaergy is close to the input/output signal energy. In addition,
that this prototype has only a small ripple in the passband agdantization noise introduced in the subbands may arrive at
a relatively high stopband attenuation. The frequency responsigs output with an amplification of up to 3.27 (in terms of the
of the analysis filters derived from the prototype are depicted imoise power).
Fig. 2(b). Interestingly, the near-ideal frequency response of theTable | gives an overview of the valuds, A, and ® for
prototype does not translate into near-ideal modulated filtemght-channel filterbanks with filter lengths of 32, 48, and 64,
The first and last filtergio(n) andhy,—1(n) show a passband and various delays. As the results show, for a fixed delay, the
behavior that is significantly different from that of the prototypevalue of the objective functios decreases with increasing filter
The same holds for the corresponding synthesis filigf®) length, but the frame becomes more open, and the medsure
andgys—1(n); see Fig. 2(c). Experiments with various configfor the passband variation increases. Thus, although increasing
urations (differentd, D, N) showed that such a behavior isN increases the stopband attenuation, it does not necessarily
typical for cosine-modulated low-delay filterbanks with a proenhance the performance of the filterbank. The judgment cer-
totype designed to minimize (44). Although the problems atainly depends on the application. If, for example, the first and
concentrated on the extreme frequencies 0 andw = = for the last bands are not needed in an application and the filters
most lowpass prototypes, it is possible to design PR prototypegn),. .., hy—2(n) have the desired frequency responses,
that show problems at other frequencies. In any case, the filen the behavior dfy(n) andhy,—1(n) is irrelevant regarding
tersho(n), go(n) andhyr—1(n), gar—1(n) are particularly crit- the performance. If, however, the filterbank is used in a scheme
ical. This becomes clear when expressing the real-valued codinat relies on the assumption of a near-unitary behavior, then
modulation with modulation frequencies, = =(k + 0.5)/M a smallA and largeB pose problems. Table | also shows that
via Euler’s formula as complex modulation with positive anaith increasing delay, the performance is enhanced. For the
negative frequenciesw;. Fork = 0 andk = M — 1, the delay of D = L, — 1, which is also achieved by paraunitary
frequency-shifted versionB(e’(“+<+)) of the prototype show filterbanks with the same filter length, the above-mentioned
significant overlap. Depending on the relative phase, the overlablems disappear. However, increasing the delay byer 1
causes the increase and attenuation of the frequency responselbtause the same problems as decreasing it.
ho(n), go(n), har—1(n), andgar—1(n). We now consider the design of prototypes that minimize (44)
To give a quantitative measure of the above-mentioned effeghder the condition of fixed frame bounds. Agald,= 8, D =
we define the value\ as the difference between the highest5, and critical sampling are used. Table Il gives an overview of
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Eigenvalues

_ . . . . . I .
0 0.05 01 015 02 025 03 035 04 045 05 0 ; ' ;

Ay | 096|092 | 0.83 | 0.68
Bs | 1.03 | 1.06 | 1.19 | 1.46
Ag | 098 | 095 0.85 | 0.69
Bg | 1.02 | 1.06 | 1.17 | 1.46
Ag | 0.98 | 0.95 | 0.87 | 0.69

normalized frequency 0 01 02 03 04 05 06 07 08 09 1
normalized frequency
(€Y
a
5 . : : . : : @)
1.15 . . .
0
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-40 : : ; L
0 005 01 015 02 025 03 035 04 045 05 09 A s ‘ ‘ s . ‘ . s
normalized frequency -0 01 02 03 04 05 06 07 08 09 1
normalized frequency
(b)
5 . K . ; K . (b)
Fig. 4. Eigenvalued,(w) as a function of frequency. (a) Filterbank of Fig. 2.
0 (b) Filterbank of Fig. 3.
-5
TABLE Il
-10 FRAME BOUNDS FORFILTERS DESIGNED FORCRITICAL SAMPLING AND USED
WITH OVERSAMPLING FACTOR L. FILTER LENGTH L,, = 48. INDICES
-15 INDICATE THE OVERSAMPLING FACTORS
8
-20 B; 105 1.1 | 125 1.5
A; [ 095|091} 0.8 | 0.67
-2 \ By | 104 [1.09| 12 | 1.48
J
{
' “ J

A
Wf\!!m%\\a@ i

L i 1 L I 1
0 005 01 015 02 025 03 035 04 045 05
normalized frequency

(©) .

Fig. 3. Normalized frequency responses of eight-channel filterbank. @}IonA ,bUt mo“? stopband e_nergythan a more open frame.
Prototype. (b) Analysis filters. (c) Synthesis filters. Parametefs: = 8, Increasing the filter length yields a lower stopband energy at
D =15, L, = 48. Prototype designed to minimize (44) under the conditiothe same frame bounds. Thus, one clearly gains a benefit from
of B =11 increasing the filter length at fixed frame bounds.

To give an example for the design under the condition of fixed
the obtained valueB, ¢, andA. A comparison of the results in frame bounds, Fig. 3 shows the frequency responses of the pro-
Table Il shows that a tighter frame yields less passband vatbtype and the analysis and synthesis filters for the case where




180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

TABLE IV
VALUES B, &, A, AND A FOREIGHT-CHANNEL FILTERBANKS WITH D = 15, DESIGNED TOMINIMIZE (44) FOR OVERSAMPLING FACTOR TwO, UNDER THE
CONDITION OF FIXED FRAME BOUNDS

L, 32 48 64
B [105] 11 |125[ 1.5 [1.05] 1.1 [125] 1.5 [1.05] 1.1 [1.25] 15
& |034|027|021|016]033]026|0.18 012|033 |026|0.17 | 0.11
A[dB] [ 041|079 1.9 | 35 | 041|079 | 1.9 | 35 | 041|076 | 1.9 | 3.6

L, =48, D = 15, andB = 1.1. As the graphs in Fig. 3(b) may lead to wide open frames and thus to an undesirable nu-
and (c) show, all filtergi.(n) andgx(n) are almost ideally fre- merical behavior. The numerical properties can be directly con-
guency-translated versions of the prototype. The value 1.1  trolled by incorporating a frame analysis into the prototype de-
indicates a relatively tight frame so that the assumption ofsign process. The results show that increasing the filter length
near-unitary behavior can be justified in applications such alows the lowering of the stopband energy at a given system
signal compression. In addition, the passband variaids O delay and given frame bounds.
dB in this case.

To illustrate the control of the frame bounds during the design APPENDIX A
procedure, Fig. 4 shows the eigenvalugéw) as a function of EIGENVALUES AND EIGENVECTORS OFS (e/“)
frequency for the examples in Figs. 2 and 3. While the extrem . .
in Fig. 4(a) occur atv = =, they appear in Fig. 4(b) &&57x. “We consider 2 2 matrices of the form
Thus, in general, the extrema do not necessarily occur at one of S, = {ak bk:|
the special frequencies = 0 andw = 7.

When using prototypes designed for critical sampling in _ ()
oversampled filterbanks, the frames become tighter. Thisdth ax. cx € Randb, € C. The eigenvalues; ™, u = 1, 2 of
demonstrated in Table IlI, which shows the frame bounds @ &€ given by

the length-48 filters of Table Il and different oversampling (1;2) 1 1 5 5
factors. Table Il also shows the lower bountl because Ay = §(ak +op) £ 5‘/(‘”“ = cr)? + Albi*.

AB = 1 only holds for critical sampling. In all cases, it turned _ ) (1)
outthatAB > 1if L > 1. The eigenvectors ofS,, which are denoted ag, =

Finally, prototypes for oversampling by a factor two havé”i”)vy;(gm]Ty p=12, satisfySkzé”) = )‘gl)xgl)-
been designed. To exploit the additional degrees of freedonfNOW, we consider atv x N matrix S with evenN defined
due to oversampling, the lifting structure of [17] has bee®S
amended by, x 2L rotation matrices following each lifting o
stage and taking linear combinations of the filters contributing
to Pryen(z), £ = 0,1,...,2L — 1 for a givenk. Correspond- +diag [b07b1, .. .,bN/Q_l,b*N/z_l, *N/2_27 .. .,bg] JIn.
ingly, the inverse rotation matrices were used together with ) B
the dual lifting stages for the design @ha_1_k_en(2), It is easily verified that the length* vectors
{ =0,1,...,2L — 1, and the samé. The completeness of () ) ) T
this parameterization in the sense that it describes all possible Y = [0k7xk s ON—2—2, Yy :Ok}
E;?storfg?ise;?lr i%g;&lmpled, coslr_\e-modulated_ P.R f”terban\&%ereok denotes a row vector df zeros, and satisfies

gated, but it is clear that it increases the

design freedom compared with critical sampling. The obtained Syl = Ay,
valuesB, A, ®, andA are listed in Table IV. The comparison
with Table 1l shows that oversampling allows us to obtaifihus,y}"’ are the eigenvectors, and"’ are the eigenvalues of
significantly smaller stopband energies for fixed frame bound§: The comparison with Section 11l-B shows that for ev&n
This is partly due to the increased design freedom in the ovéfe eigenvalues d§(e’) are indeed given by (24).
sampled case but also due to the fact that for a given prototypel-or odd N, we have to consider a matrsof the form
the frame becomes tighter with increasing oversampling factgr.: diag[

diag [007 ai,-.-,aAN/2-1,CN/2—1,CN/2-25- - -, Co]

ag;- .-, N/2|-1, Q| N/2]; C[N/2]—15- > CO]
V. CONCLUSIONS "‘diag[bov--~vbLN/2J—17bLN/2vaTN/2J—1v~-~vb3} I

Explicit expressions for the eigenvalues of the frame opdn this case/V — 1 eigenvectors of have the same structure as
ator of cosine-modulated filterbanks have been presented, whicheven N, and the corresponding eigenvalues are the same as
allow an efficient computation of frame bounds directly fronabove. One eigenvector is given §y= [0|n/2), 1, OLN/QJ]T,
the prototype’s polyphase components. The solutions hold famd the corresponding eigenvaluedigy/z) + b| /2. Alto-
all numbers of channels and all integer oversampling factogether, this shows that the computation of the eigenvalues of
The analysis of low-delay, biorthogonal filterbanks showed th&t /) can be restricted to the analysis 0k2 and 1x 1 sub-
prototypes solely designed to minimize the stopband enengatrices ofS(e’).
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APPENDIX B
DISCRETIZATION ERROR OF THEFFT METHOD

We study the discretization error of the FFT method for
critical sampling. This error can be seen as an upper limit for o
the oversampled case because oversampling typically leads
to tighter frames and, thus, to less frequency deviation of the
eigenvalues of the frame operator. In particular, we consider®
the squared difference of two adjacent frequency samples of
A} (w), computed with the FFT algorithm from the sequencel10]

ay(n) given in (41). LetL; be the length ofz (n), and let

Ly, > L be the FFT length after zero padding. The squaregi]

discretization step size between frequencigs= 27ru/Lk and

wur1 = 27(p + 1)/ Ly, can be written as the equation at the [12
top of the page. Using the Cauchy—Schwartz inequality and

the fact thafe’#| = 1, we obtain

A% <ol (L, L)
with ”a;fHZ = ZLL_1|ak( _2(Lk - 1)/2)]* and
EQ(Lkik):Zik:gl 6_327"”/Lk — 117 in order to ensure that

Ay, is smaller or equal to a maximum valle,.., we have
to choosel, large enough to satis®( Ly, Lr) < Anax/ ||lak]l-

To give an example, in the design of the prototype in Fig. 3, wd17]
haveL, = 3 and||a}|| < 2. The above analysis shows that an

FFT length of 1024 ensures thaty, , < 0.028.
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