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Frame Analysis for Biorthogonal
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Abstract—This paper addresses the efficient computation of
frame bounds for cosine-modulated filterbanks. We derive explicit
expressions for the eigenvalues of the frame operator that can be
easily computed from the prototype’s polyphase components. The
number of channels and the downsampling factor may be even
or odd, and the oversampling factor is supposed to be an integer.
The analysis of low-delay, biorthogonal filterbanks shows that
prototypes solely designed to minimize the stopband energy may
lead to wide open frames and, thus, to an undesirable numerical
behavior. Because the computational cost of determining the
frame bounds with the proposed method is very low, we can
directly use the bounds during prototype optimization and obtain
prototypes with minimum stopband energy under the condition of
fixed frame bounds. Various design examples are presented.

Index Terms—Biorthogonal filterbanks, cosine-modulated filter-
banks, frame analysis, low delay.

I. INTRODUCTION

COSINE-MODULATED filterbanks are very popular in
signal processing because of their low design and imple-

mentation costs. The first designs of perfect reconstruction (PR)
cosine-modulated filterbanks were carried out to yield parauni-
tary filterbanks [1]–[4]. Paraunitary filterbanks use linear-phase
prototypes, and the delay of the entire analysis/synthesis system
is determined by the length of the prototype. More recently,
biorthogonal, low-delay filterbanks have been introduced
[5]–[11]. Such designs are attractive because they allow the
choice of the overall system delay independently of the lengths
of the filters involved. A collection of general PR conditions
for critical sampling can be found in [10]. Design methods for
finite impulse response (FIR) oversampled filterbanks were
considered in [9] and [12]. Infinite impulse response (IIR)
filterbanks were designed in [11].

The quality criterion commonly used in the design of both
paraunitary and biorthogonal filterbanks is the minimization of
the stopband energy of the prototype [8]–[11]. Design examples
have shown that for a fixed delay the prototypes for biorthogonal
filterbanks can have much higher stopband attenuation than the
ones for paraunitary filterbanks. However, examples also show
that for biorthogonal filterbanks, the good properties of a pro-
totype do not necessarily translate into good properties of the
modulated filters. In this paper, we will study this phenomenon
using frame analysis.
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Frame analysis is a powerful tool to assess the properties of
filterbanks and transforms [12]–[16]. Frames for general, over-
sampled filterbanks have been studied in [14] and [15]. The spe-
cial case of cosine-modulated filterbanks has been addressed in
[12], where the aim was mainly to design filterbanks with tight
frames (i.e., filterbanks that provide unitary transforms). In [16],
frame analysis was used to assess the properties of biorthogonal
two-channel filterbanks for image compression purposes where
the energy of quantization noise is to be estimated in the sub-
band domain.

In this paper, we use frame analysis to assess and design
biorthogonal, cosine-modulated filterbanks. Based on the gen-
eral methods proposed in [14] for determining frame bounds
through an eigenanalysis of a frequency-dependent matrix,
which is known as the frame operator, we derive new expres-
sions for the frame bounds that are very easy and efficient to
compute. In particular, we will derive explicit expressions for
the eigenvalues of the frame operator. For the special case of
critically sampled filterbanks, we will present an even more
efficient method that finds the bounds directly from Fourier
transforms of the autocorrelation sequences of the prototype’s
polyphase components. Because the computational cost of
determining the frame bounds is very low, we can directly use
the bounds during prototype optimization and obtain prototypes
with minimum stopband energy under the condition of fixed
frame bounds.

A. Notation

Matrices and vectors are printed in boldface. and de-
note the identity and counter identity matrices, respec-
tively. The term diag denotes the formation of a diagonal ma-
trix. means the Euclidean norm of a vector.is the set of all
integers, is the set of all real, and is the set of all complex
numbers. and mean rounding to the next larger/smaller
integer, respectively. The asteriskdenotes convolution.

II. COSINE-MODULATED FILTERBANKS

In this paper, we consider both critically sampled and over-
sampled cosine-modulated filterbanks. Fig. 1 shows the filter-
bank in direct form, where and ,
denote the impulse responses of the analysis and synthesis fil-
ters, respectively. is the number of channels, and is the
ratio between the sampling rate at the input and in the subbands.

may be even or odd, but the oversampling factor
is restricted to be an integer. The following type of modulation
is used to derive the analysis and synthesis filters from proto-
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Fig. 1. M -band analysis and synthesis filterbanks with sampling rate ratioN .

types with impulse responses and

(1)

where

(2)

is the overall delay of the analysis/synthesis system and is
assumed to be of the form

(3)

where is an integer. Note that this is the most commonly used
delay because it does not put severe restrictions on the proto-
type’s coefficients. For example, it automatically occurs in the
case of paraunitary cosine-modulated filterbanks. For other de-
lays, some of the prototype’s polyphase components have to de-
grade to simple delays or even zero sequences; see [10]. The
range for in (1) depends on the filter lengths, which are, in
general, independent of the delay.

For further analysis, it is convenient to describe the filterbank
via its analysis and synthesis polyphase matrices and

. The superscript denotes the oversampling factor.
Given the filters in (1) with the modulation according to (2), the
matrices and can be expressed as [9]

...
(4)

(5)

In (4) and (5), and are cosine modulation ma-
trices given by

(6)

with and . The
matrices are defined as (7), shown at the bottom of
the page, where , are the type-1
polyphase component of the analysis prototype given by

(8)

The matrices have the same definition as , only
with replaced by the type-1 polyphase components
of the synthesis prototype. The matrices and have the
properties

(9)

and

(10)
With the polyphase matrices and , the perfect
reconstruction conditions can be formulated as

(11)

Expanding (11) using (4), (5), and (9) and replacing by
in the expression obtained yields the following PR conditions

on the prototype [9]:

(12)

diag

(7)
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Note that (12) shows the PR conditions on the prototype for
times oversampled, biorthogonal, cosine-modulated filterbanks
with the delay in (3). In the special case of paraunitary filter-
banks, a linear-phase (symmetric) prototype is required, and the
same prototype is to be used for analysis and synthesis. Equa-
tion (12) then leads to the following conditions on paraunitary
prototypes [9]:

(13)

III. FRAME ANALYSIS

A. Definition and Meaning of Frames

Let , , be vectors containing
the filter coefficients , and let be a vector con-
taining the input samples . Assuming that , the
following inequality can be stated:

(14)
with some . If and , the values
and are called frame bounds, and the set is called a
frame for . The frame bounds themselves can be seen as
indicators of the numerical properties of the filterbank. If the
set constitutes a frame, then there exists a corresponding
PR synthesis filterbank with filters that also constitutes a
frame with frame bounds and such that

(15)
Under certain conditions, the bounds are related as
and . We will return to this point at the end of Sec-
tion III-B2.

In the special case that , the frame is called a tight
frame. If , the filterbank is paraunitary, and (14) re-
duces to . If
and the filterbank is critically sampled, then the vectors
form an orthonormal basis for , and the above-mentioned
formula for energy preservation becomes Parseval’s identity.
Further discussion of the effects of the frame bounds on the fil-
terbank properties (including the case where ) can be
found in [14].1

In general, the smaller the ratios and , the better
the numerical properties of the filterbank will be. If and

are close to one, then the filterbank can be regarded as
being almost paraunitary, and the assumption of energy preser-
vation may be used without much error when relating the energy
of the subband signals to the energy of the input or output signal
of a filterbank.

1Note that in [14], the filters were normalized to have unit energy so that tight
frames were obtained withA = B = M=N .

Having almost paraunitary filterbanks is particularly useful
in source coding where operational rate-distortion algorithms
are to be applied in the subband domain, and exact paraunitary-
ness cannot be achieved because of other requirements such as
linear phase or low delay. For almost paraunitary filterbanks, the
squared reconstruction error at the filterbank output is close to
the squared quantization error in the subband domain. Thus, a
bit allocation optimized for minimum error in the subbands will
then be near-optimal for the final output signal. With frame anal-
ysis, it is possible to exactly determine the maximum deviation
between the errors in the subband domain and at the filterbank
output. With denoting the output error and denoting
the quantization error in bandat time index , the following
inequality holds [16]:

(16)

In (16), it is assumed that the entire error energy is finite, which
is typically the case for real-world, time-limited signals.

B. Computation of Frame Bounds for Cosine-Modulated
Filterbanks

Algorithms for the computation of the frame bounds have
been described in [14] and [16]. We follow the method in [14]
because it can be most easily applied to cosine-modulated filter-
banks. We will first look at the analysis filterbank and derive ex-
plicit expressions for the eigenvalues of the frame operator. In a
second step, we will consider the frame bounds for the synthesis
filterbank and relate them to those of the analysis bank. Then, we
will derive a simplified method for computing the frame bounds
in the critically sampled case.

1) Frame Bounds for the Analysis Filterbank:Let

(17)

where is the paraconjugate of the analysis polyphase

matrix , that is, for .
Because cosine-modulated filterbanks have real-valued coeffi-
cients, we may write . Now, let us de-
note the eigenvalues of as , .
The frame bounds and are given by [12], [14]

(18)

where the symbols ” ” and ” ” denote the essential
infimum and supremum, respectively. The matrix repre-
sents the frame operator for the analysis filterbank.

In the following, we derive explicit expressions for the frame
bounds, using the particular structure of given in (4).
Inserting (4) into (17) and rewriting the expression obtained
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using (10) yields

(19)

Because the matrices are diagonal, it turns out that
has nonzero elements on its diagonal and anti-diagonal

only. Let us write as

diag

diag (20)

From (7) and (19), we find that

(21)

and we have (22), shown at the bottom of the page. To simplify
the further discussion, we first look at the case whereis even,
and then, we outline the changes for odd.

Even : Because of the special structure of , its
eigenvectors have only two nonzero entries, and we can reduce
the task to that of analyzing the eigenvalues of the 22 matrices

(23)

A more detailed explanation is given in Appendix A.
From (21) and (22), one can infer that the terms

are real-valued and that
are symmetric, i.e., and

. Hence, the two eigen-
values and of can be explicitly

expressed as2 (24), shown at the bottom of the page. Note that
(24) provides a straightforward method for determining the
eigenvalues from the polyphase components of the prototype.
The required terms and are simply
the discrete-time Fourier transforms of sequences and

, which can be obtained as follows. Let

if
otherwise.

(25)

Then

(26)

and we have (27), shown at the bottom of the next page. For FIR
prototypes, an FFT algorithm and zero padding can be used in
practice to obtain and from
and in an efficient manner on a fine frequency
grid. A discussion of the discretization error is given in Ap-
pendix B.

Odd : For odd , the formulation (20) with
and according to (21) and (22) is still valid.
However, because the diagonal and anti-diagonal of meet
in the center, there is a row and column containing a single
nonzero entry .
Thus, the eigenvalues of are given by (24)
for , and the extra value

.
Relation to the Work in [12]:Frame bounds for over-

sampled cosine-modulated filterbanks were also considered
in [12]. There, an alternative expression for the frame bounds
of cosine-modulated filterbanks with integer oversampling
was derived, which involves modulated versions of the pro-
totype’s polyphase components. It was shown that under
certain symmetry conditions, which are satisfied by symmetric
prototypes, the frame bounds can be obtained as suprema and
infima of certain functions of frequency, which play the same
role as the eigenvalues in (24). However, (24)
is not limited to symmetric prototypes and gives, therefore,

2The ceiling operation for the index has been introduced in view of the case
whereN is odd.

(22)

(24)
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a more general formulation of the eigenvalues of the frame
operator. For example, (24) also allows the frame analysis
of low-delay filterbanks, which generally require nonsym-
metric prototypes. When imposing symmetry of the form

, the anti-diagonal of
vanishes, and (24) reduces to , which is an
alternative expression to the one given in [12].

2) Frame Bounds for the Synthesis Filterbank:Let

(28)

The frame bounds and are given by

(29)

where are the eigenvalues of .
Carrying out the same derivation as for the analysis side

yields

diag

diag (30)

where the terms and are defined ac-
cording to and , respectively, with
instead of . Thus, and have the same structure
but different signs for the anti-diagonal terms.

Frame Bounds for Equal Analysis and Synthesis Proto-
types: In the following, we consider the use of the same proto-
type for analysis and synthesis, resulting in
and . If is even, we then have
to analyze the submatrices

(31)

which have the same eigenvalues as in (23). This means
that

(32)

for even and equal prototypes on the analysis and synthesis
sides.

If is odd, we have to analyze the submatrices
for and a single term

in the center of .
Because will, in general, be different from , it

will cause an eigenvalue .
Whether or not this leads to boundsand that are different
from and depends on the prototype in use.

Relationship to Dual Frames:In [14], synthesis filter-
banks of the form

(33)

were analyzed. There, it was shown that these particular syn-
thesis filters are associated with the inverse frame operator of the
analysis filterbank and that they lead to a dual frame with frame
bounds and . However, for the oversam-
pled case, the synthesis filterbank is not unique, and there are
infinitely many sets of synthesis filters that provide PR with the
same delay . In general, the filters in are not modulated
versions of a single prototype and cannot be as efficiently im-
plemented as modulated filterbanks. Exceptions are for critical
sampling and for cases where the analysis prototype exhibits
certain symmetries [12]. The synthesis filters considered in the
present paper, on the other hand, are explicitly designed to be
modulated versions of a prototype. Therefore, and
represent, in general, different PR synthesis filterbanks and lead
to different frame bounds. In the critically sampled case, how-
ever, and are equal up to a delay and yield the same
frame bounds.

3) Frame Bounds for Critical Sampling:In the following,
we derive a simplified method for computing the frame bounds
in the critically sampled case with even and use of the same
prototype on the analysis and synthesis sides. For this, we ana-
lyze the product with and, thus, with

. This yields

(34)

Inserting (21) and (22) into (34) and evoking the PR condition
(12) with yields

(35)

This interesting relationship immediately implies that

(36)

for critically sampled PR cosine-modulated filterbanks that are
derived from a single prototype because for a fixed ,
the eigenvalue will take on its infimum at the same fre-
quency where has its supremum. Note that a sim-
ilar condition has been mentioned in [16] for two-channel filter-
banks.

(27)
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Equation (35) is also the key to further simplification of the
computation of the frame bounds. From (24) and (35), it follows
that

(37)

with

(38)

Inserting (21) into (38) with under consideration of
yields

(39)

For further simplification, we define

(40)

which is the discrete-time Fourier transform of the sequence

(41)

Again, the terms can be efficiently computed from
on a fine frequency grid using an FFT algorithm and

zero padding. An analysis of the discretization error of the
FFT method is given in Appendix B. The frame bounds finally
amount to

(42)

with

(43)

IV. EXAMPLES

In this section, we compare the performance of various low-
delay prototype designs for cosine-modulated filterbanks with

channels and a delay of taps. In all examples,
the same prototype was used for analysis and synthesis. Proto-
types were designed to minimize the stopband energy

(44)

under the constraint (12). To ensure that (12) is satisfied, the
lifting structure of [17] was used. The stopband edge frequency
for the prototypes was chosen as .

Note that the objective function (44) is widely used in the
design of both paraunitary and biorthogonal filterbanks. The
assumption behind this is that the modulated filters in the fil-
terbank should have good properties as long as has good

(a)

(b)

(c)

Fig. 2. Normalized frequency responses of eight-channel filterbank. (a)
Prototype. (b) Analysis filters. (c) Synthesis filters. Parameters:M = 8,
D = 15,L = 48. Prototype designed to minimize (44).

properties. However, as the following examples will show, this
is not necessarily true for biorthogonal filterbanks.
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TABLE I
VALUESB, �, AND � FOR EIGHT-CHANNEL FILTERBANKS, DESIGNED TOMINIMIZE (44) FOR CRITICAL SAMPLING

TABLE II
VALUES B, �, AND � FOR EIGHT-CHANNEL FILTERBANKS WITH D = 15, DESIGNED TOMINIMIZE (44) FOR CRITICAL SAMPLING UNDER THE

CONDITION OF FIXED FRAME BOUNDS

To design biorthogonal filterbanks with controlled frame
bounds, we add the constraint

(45)

during optimization, where is an arbitrary, predefined
upper bound for the actual frame boundwith .
Due to (36), this implies that for the case of
critical sampling. For the constrained optimization, the Matlab
routine fmincon has been used.

First, we look at designs using solely the objective function
(44). The filter lengths ( ) are chosen as 32, 48, and 64, and
critical sampling is considered. An example for the frequency
response of a prototype filter is given in Fig. 2(a). One can see
that this prototype has only a small ripple in the passband and
a relatively high stopband attenuation. The frequency responses
of the analysis filters derived from the prototype are depicted in
Fig. 2(b). Interestingly, the near-ideal frequency response of the
prototype does not translate into near-ideal modulated filters.
The first and last filters and show a passband
behavior that is significantly different from that of the prototype.
The same holds for the corresponding synthesis filters
and ; see Fig. 2(c). Experiments with various config-
urations (different , , ) showed that such a behavior is
typical for cosine-modulated low-delay filterbanks with a pro-
totype designed to minimize (44). Although the problems are
concentrated on the extreme frequencies and for
most lowpass prototypes, it is possible to design PR prototypes
that show problems at other frequencies. In any case, the fil-
ters , and , are particularly crit-
ical. This becomes clear when expressing the real-valued cosine
modulation with modulation frequencies
via Euler’s formula as complex modulation with positive and
negative frequencies . For and , the
frequency-shifted versions of the prototype show
significant overlap. Depending on the relative phase, the overlap
causes the increase and attenuation of the frequency response of

, , , and .
To give a quantitative measure of the above-mentioned effect,

we define the value as the difference between the highest

passband amplification in any one of the bands and the lowest
local minimum in any of the passbands. If none of the passbands
shows a local minimum, then is set to zero. For the filterbank
in Fig. 2, the value is dB, which is a substantial
variation within the passband frequency responses.

The frame bounds for the above-considered filterbank
amount to and , which means that the
energy of the input or output signal of the filterbank may be
different from the subband energy by a factor between 0.31
and 3.27, depending on the actual signal. Thus, although the
filterbank constitutes a frame and provides PR, it is not well
suited for schemes that rely on the assumption that the subband
energy is close to the input/output signal energy. In addition,
quantization noise introduced in the subbands may arrive at
the output with an amplification of up to 3.27 (in terms of the
noise power).

Table I gives an overview of the values, , and for
eight-channel filterbanks with filter lengths of 32, 48, and 64,
and various delays. As the results show, for a fixed delay, the
value of the objective function decreases with increasing filter
length, but the frame becomes more open, and the measure
for the passband variation increases. Thus, although increasing

increases the stopband attenuation, it does not necessarily
enhance the performance of the filterbank. The judgment cer-
tainly depends on the application. If, for example, the first and
the last bands are not needed in an application and the filters

have the desired frequency responses,
then the behavior of and is irrelevant regarding
the performance. If, however, the filterbank is used in a scheme
that relies on the assumption of a near-unitary behavior, then
a small and large pose problems. Table I also shows that
with increasing delay, the performance is enhanced. For the
delay of , which is also achieved by paraunitary
filterbanks with the same filter length, the above-mentioned
problems disappear. However, increasing the delay over
will cause the same problems as decreasing it.

We now consider the design of prototypes that minimize (44)
under the condition of fixed frame bounds. Again, ,

, and critical sampling are used. Table II gives an overview of
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(a)

(b)

(c)

Fig. 3. Normalized frequency responses of eight-channel filterbank. (a)
Prototype. (b) Analysis filters. (c) Synthesis filters. Parameters:M = 8,
D = 15, L = 48. Prototype designed to minimize (44) under the condition
of B = 1:1.

the obtained values , , and . A comparison of the results in
Table II shows that a tighter frame yields less passband vari-

(a)

(b)

Fig. 4. Eigenvalues� (!) as a function of frequency. (a) Filterbank of Fig. 2.
(b) Filterbank of Fig. 3.

TABLE III
FRAME BOUNDS FORFILTERS DESIGNED FORCRITICAL SAMPLING AND USED

WITH OVERSAMPLING FACTORL. FILTER LENGTHL = 48. INDICES

INDICATE THE OVERSAMPLING FACTORS

ation but more stopband energy than a more open frame.
Increasing the filter length yields a lower stopband energy at
the same frame bounds. Thus, one clearly gains a benefit from
increasing the filter length at fixed frame bounds.

To give an example for the design under the condition of fixed
frame bounds, Fig. 3 shows the frequency responses of the pro-
totype and the analysis and synthesis filters for the case where
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TABLE IV
VALUESB, �,�, AND A FOR EIGHT-CHANNEL FILTERBANKS WITH D = 15, DESIGNED TOMINIMIZE (44) FOR OVERSAMPLING FACTOR TWO, UNDER THE

CONDITION OF FIXED FRAME BOUNDS

, , and . As the graphs in Fig. 3(b)
and (c) show, all filters and are almost ideally fre-
quency-translated versions of the prototype. The value
indicates a relatively tight frame so that the assumption of a
near-unitary behavior can be justified in applications such as
signal compression. In addition, the passband variationis 0
dB in this case.

To illustrate the control of the frame bounds during the design
procedure, Fig. 4 shows the eigenvalues as a function of
frequency for the examples in Figs. 2 and 3. While the extrema
in Fig. 4(a) occur at , they appear in Fig. 4(b) at .
Thus, in general, the extrema do not necessarily occur at one of
the special frequencies and .

When using prototypes designed for critical sampling in
oversampled filterbanks, the frames become tighter. This is
demonstrated in Table III, which shows the frame bounds for
the length-48 filters of Table II and different oversampling
factors. Table III also shows the lower bound because

only holds for critical sampling. In all cases, it turned
out that if .

Finally, prototypes for oversampling by a factor two have
been designed. To exploit the additional degrees of freedom
due to oversampling, the lifting structure of [17] has been
amended by rotation matrices following each lifting
stage and taking linear combinations of the filters contributing
to , for a given . Correspond-
ingly, the inverse rotation matrices were used together with
the dual lifting stages for the design of ,

, and the same. The completeness of
this parameterization in the sense that it describes all possible
prototypes for oversampled, cosine-modulated PR filterbanks
has not been investigated, but it is clear that it increases the
design freedom compared with critical sampling. The obtained
values , , , and are listed in Table IV. The comparison
with Table II shows that oversampling allows us to obtain
significantly smaller stopband energies for fixed frame bounds.
This is partly due to the increased design freedom in the over-
sampled case but also due to the fact that for a given prototype,
the frame becomes tighter with increasing oversampling factor.

V. CONCLUSIONS

Explicit expressions for the eigenvalues of the frame oper-
ator of cosine-modulated filterbanks have been presented, which
allow an efficient computation of frame bounds directly from
the prototype’s polyphase components. The solutions hold for
all numbers of channels and all integer oversampling factors.
The analysis of low-delay, biorthogonal filterbanks showed that
prototypes solely designed to minimize the stopband energy

may lead to wide open frames and thus to an undesirable nu-
merical behavior. The numerical properties can be directly con-
trolled by incorporating a frame analysis into the prototype de-
sign process. The results show that increasing the filter length
allows the lowering of the stopband energy at a given system
delay and given frame bounds.

APPENDIX A
EIGENVALUES AND EIGENVECTORS OF

We consider 2 2 matrices of the form

with and . The eigenvalues , , 2 of
are given by

The eigenvectors of , which are denoted as
, , 2, satisfy .

Now, we consider an matrix with even defined
as

diag

diag

It is easily verified that the length- vectors

where denotes a row vector of zeros, and satisfies

Thus, are the eigenvectors, and are the eigenvalues of
. The comparison with Section III-B shows that for even,

the eigenvalues of are indeed given by (24).
For odd , we have to consider a matrixof the form

diag

diag

In this case, eigenvectors of have the same structure as
for even , and the corresponding eigenvalues are the same as
above. One eigenvector is given by ,
and the corresponding eigenvalue is . Alto-
gether, this shows that the computation of the eigenvalues of

can be restricted to the analysis of 22 and 1 1 sub-
matrices of .
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APPENDIX B
DISCRETIZATION ERROR OF THEFFT METHOD

We study the discretization error of the FFT method for
critical sampling. This error can be seen as an upper limit for
the oversampled case because oversampling typically leads
to tighter frames and, thus, to less frequency deviation of the
eigenvalues of the frame operator. In particular, we consider
the squared difference of two adjacent frequency samples of

, computed with the FFT algorithm from the sequence
given in (41). Let be the length of , and let

be the FFT length after zero padding. The squared
discretization step size between frequencies and

can be written as the equation at the
top of the page. Using the Cauchy–Schwartz inequality and
the fact that , we obtain

with and

. In order to ensure that
is smaller or equal to a maximum value , we have

to choose large enough to satisfy .
To give an example, in the design of the prototype in Fig. 3, we
have and . The above analysis shows that an
FFT length of 1024 ensures that .
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