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Boundary Filter Optimization for Segmentation-Based
Subband Coding
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Abstract—This paper presents boundary optimization tech- filterbanks, however, requires some additional steps to ensure
niques for the nonexpansive decomposition of arbitrary-length g nonexpansive decomposition where the total number of

signals with multirate filterbanks. Both biorthogonal and parau-  ¢,ppand samples produced from a segment is equal to the
nitary filterbanks are considered. The paper shows how matching . .
number of input samples in that segment.

moments and orthonormality can be imposed as additional condi- 7 . - . .
tions during the boundary filter optimization process. It provides We assume a filterbank analysis with a uniform, critically
direct solutions to the problem of finding good boundary filters sampledA/-channel filterbank. The length of the input signal
for the following cases: a) biorthogonal boundary filters with js denoted agV. The aim is to limit the total number of sub-

exactly matching moments and b) orthonormal boundary filters band samples t& while being able to perfectly reconstruct the

with almost matching moments. With the proposed methods, nu- . t si | f th bband | S | techni t
merical optimization is only needed if orthonormality and exactly INPUL SIghal Iroim the subband Ssampies. Several techiniques to

matching moments are demanded. The proposed direct solutions achieve this goal have been presented in the literature [5]—{17].
are applicable to systems with a large number of subbands and/or The oldest and simplest method to process finite-length sig-
very long filter impulse responses. Design examples show that the nals is circular convolution [6], where finite-length signals are
;ne?gé‘;eﬁya”ow the design of boundary filters with good frequency perigdically extended prior filterbank analysis. ¥ is an in-
' teger multiple ofM, the obtained subband signals are periodic
Index Terms—Boundary filters, filterbanks, multirate signal  with periodN/M, and onlyM subband signals of length/M
processing, subband coding. need to be stored to enable exact reconstruction of the input
signal. Because the left-hand side of a signal gets connected
l. INTRODUCTION to the right-hand one, severe coding artifacts may occur when
the signal properties are significantly different on both sides. A

.U LTIRATE filterbgnksoarethwidely l(sted _i(r; at:ﬁlio "?mdrrllethod with better properties is symmetric reflection, which has
image compression. ©n the encoder side, the SIgNgizen, siydied by several authors [5], [7]-[10]. In this method, the
are decomposed into subband signals that are then quantl%I

furth di loss| d stored or t i e-length signal is first symmetrically extended at its bound-
urther compressed In a 10SSIess manner, and stored or ra&@%s and then periodically extended, resulting in a signal with

mitted. The decoder reverses the lossless cogiing stage, f 0d2N or 2N — 2, depending on the type of symmetry used
the quantized subband samples into a synthesis filterbank, he extension. For certain constellations\afM, extension

reconstructs an approximation of the original input signal. metries, and in conjunction with linear-phase filters, sym-

keep the r)uml?er of subband samples as low as possmle Cm%% ries in the subbands that allow us to achieve nonexpansive
subsamplmg is employed. Well-known apphca‘gons are t_rffaansforms can be obtained. An overview of permissible con-
MPE(.; audio standard [1] and wavelet-based image Cc’d'Qf%:IIations is given in [10]. Finally, the use of boundary filters
techm_que_s such as JPEG-2000 [2]'_ _has been proposed in [11]-[18]. Using boundary filters means
While filterbanks are usually designed 1o process ongoidat the original filters of the filterbank are replaced by special

S|gnals,_|t IS al_so_ of S|gn|f|cgnt mteres_t fo use them for thﬁters at the boundaries of the signal that ensure that all of the
processing O.f finite-length _S|gnals,_ Wh'Ch oceur for eXam'OLﬁ}n‘ormation on a lengthV input signal is contained in a total
in segmentation-based audio and in image coding. Segmenig ber of NV subband samples. Interestingly, the above-men-
tion-based audio coders divide an input signal into finite-leng[ '

: ned methods of circular convolution and symmetric reflection
blocks and encode each block separately [3]{5]. This strate n be interpreted as special forms of boundary filtering. How-

allows one to easily adapt the bit allocation to different SI9NQer, boundary filters are not restricted to these cases. They can

SegmeT‘FS and to directly access parts_ of the encoded.bitstreggapp“ed to both nonlinear and linear-phase filterbanks with
In addition, by segmenting audio signals directly in fron restriction on the signal length

gf attacks, :,.heft perbI?rr]n of pre—tech?es can ?e .?g’mdﬁ? [5 ‘In [11], [12], and [18] methods for the design of boundary fil-
rocessing finite-length segments of a signal with multirajg, ¢ 5o presented, but no direct solutions for their optimization
are provided. In [14] and [17], numerical optimization has been

. . . . .employed. The work in [13] and [15] presents straightforward
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Fig. 1. Example of size-limited analysis and synthesis matrices for two-band decompositiods witl8 and length-4 filters: (a) and (b) Matricd$ with
different alignments relative to the input signal. (c) and (d) Synthesis matdeasresponding td as in (a) and (b), respectively.

vanishing moments were formulated for the two-channel caske framework for the construction of boundary filters. We start
but no direct solution was given. In [19], boundary filters foby writing the subband decomposition of a signét) as
paraunitary filterbanks with ideal dc behavior and maximum
coding gain were designed. However, no higher moments and y=Hzx (1)
no biorthogonal filterbanks were considered.

This paper presents novel solutions to the problem
optimizing the boundary filters for nonexpansigé-channel

nd transforms. It shows how matching momen . ; : . o
subband transforms. It shows ho atching moments ahe convolution of the input signal with the analysis filters and

orthonormality can be imposed as additional conditions durin'gfe downsampling oberation. The veciofinally contains the
the boundary filter optimization process. Direct solutions alle ping op ' 10 y

) i ) . subband samples.
provided for the following cases: a) biorthogonal boundary There are many ways to define the structurayaind, thus,

filters with exactly matching moments and b) orthonorma .
boundary filters with almost matching moments. The solutior%be structure of the transform matuX. Throughout this paper,

. . . we assume that the center pargofvhich is computed with the
also include the simple cases where no moment conditions are -~
imposed. The direct solutions are applicable to systems WRHgmal filter impulse responses, has the form
a large number of subbands and/or very long filter impuls?_”’ ol
responses. The only case for which no straightforward solution ~°
is provided is the one where both orthonormality and exactithe definition ofy at the boundaries depends on the signal
matching moments are demanded. length and the filter alignment used and will be specified as
The paper is organized as follows. In Section Il, the framgeeded. Fig. 1(a) and (b) gives two examples of analysis ma-
work for the construction and manipulation of boundary filtergices H. As the examples show, the matrix rows in the center
is given. Section Il shows how desired moment properties cparts of H contain the time-shifted analysis impulse responses
be incorporated into the boundary filter construction. It also ath reversed order. In the upper left and the lower right corners
dresses the existence of solutions that yield both orthonormaliifythe matrices, one finds the boundary filters whose impulse
and matching moments and states a test that allows us to chegiponses are different from the ones used in steady state. With
whether or not both properties can be simultaneously achievegkpect to their position (left or right) these filters are denoted

Slfhere the vectog contains the input sequeneén).  can be
considered to be a lengthN-segment of an audio signal or a row
Hcolumn of an imageH is an N x N matrix that describes

n), ..., e (n), wo(n+1), ..., yna (n+1),.. 7.

Methods for optimizing the boundary filters are presented s iy, (n), ke, (n), ..., hey(n), ke (n). Note that the two ex-
Section IV. Section V presents examples, and Section VI givefples consider the same signal length but use different filter
some conclusions. alignments.

The synthesis operation can be written as

Il. FRAMEWORK FOR THE CONSTRUCTION z=Gy 2

OF BOUNDARY FILTERS ) L ) o
with G = H~". The columns of7 contain the synthesis filter

This section gives a matrix notation for the description afmpulse responses. Fig. 1(c) and (d) shows examples of the
filterbank decompositions of finite-length signals and outlinestructure ofG.
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The filter operations can be divided into three parts, namelye may replacd/; andlU/3 by a common matrixX/ such that
the processing of the left and right boundaries with boundawy= UHz. Then, for each signal lengtN and required filter
filters and the processing of the interior of the signal with thalignment, a dedicated matidXH has to be implemented. The
original filters. Correspondingly, the matrices can be partitionagptimization of the matrice&’ can be carried out in the same
as follows: way as the optimization d¥/,.
Initial solutions for the matrice# ;, Hs, G, and G5 that
_gT \gT| g T guarantee PR can be found via the Gram—Schmidt procedure,
H = [H{ |H;|Hj] _ _ . ; .
as shown in [11]. To give a brief outline of this method, we con-
G =[G1|G2|Gs] () sider a filterbank analysis describedias Fx g, wherey con-

) ) tains the subband samples that are to be computed. The rows
whereH, andG, contain the boundary filters for the left-handyt i contain nontruncated, time-shifted, and flipped versions

side, andH 3 andG contain the ones for the right-hand side¢ ¢ analysis filters’ impulse responses. Note thas rect-
The actual number of boundary filters and, thus, the number gular in general and that the length of the input signals

rows of Hy andH3 depends on the number of subbands and trﬂ%ger than the length af. The next step is to truncafé to an
lengths of the filters. _ o o N x N matrix. Fig. 2 illustrates the truncation for a two-band
For the analysis and synthesis operations, in partitioned forgy,.omposition and different cases of interest. The extension to
we get the M-band case is straightforward. Given the truncated matrix,
3 the method in [11] can be applied to design the required subma-
_ A trices H;, and Gy,. The matricesHH, and G5 still contain the
e = Hix, &= Z Gy @ original impulse responses. The design method can be applied
to both paraunitary and biorthogonal filterbanks. The result of
where the vectorg,, are the corresponding partitionsgf the Gram-Schmidt procedure is somewhat arbitrary, and one
If the perfect reconstruction (PR) conditi6éhd = HG = I cannot expect to design boundary filters with good properties
is satisfied, the submatrices satid#.G; = 6;,.1x, whereé;;,  this way; therefore, further optimization is needed. In the next
denotes the Kronecker symbol, and matridgsare identity two sections, methods for carrying out the optimization will be
matrices of appropriate sizes. Terms of the f@g¥H . describe presented.
projections (not necessarily orthogonal ones) onto the column
space oiGy. Clearly, if we want to replace one of the matrices
G by a new (better) matrxGy, we also need to replace
the corresponding analysis partitio;, by a new matrix  One often aims at designing the analysis filters in a filterbank
Hj, where both matrices have to satisf;.Gi = I and (or the wavelets used for a wavelet expansion) in such a way that
GiH) = G H;,. Hence, we see that bof, andG, musthave they have a large number of vanishing moments because this en-
the same column space, which has important consequenggss good energy compaction properties for low-order polyno-
regarding the choice ofs;. It means that the columns ofmial signals and other low-frequency signals. In the following,
Gy can be written as linear combinations of those(@f. we assume that the analysis filtdrg(n) in a given filterbank
With invertible, quadratic matriceld, the linear combinations have a certain number of vanishing moments, and we look at the
can be expressed & = G,U;*. For the analysis side, it impact of boundary processing on the moment properties.
means thatl;, = U, H}. Using the above-mentioned fact that When applying a filterbank to a finite-length signal by using
HiG; = é;:14, it is easy to see that the modified matriceoundary filters, the problem that the boundary filters will usu-

1. 1 MPOSING MOMENT CONDITIONS

satisfy HyG; = Uka_GjUj_l = Onl. _ _ally not satisfy any moment conditions occurs, even if the orig-
The modified analysis and synthesis equations may be writtgil filters do. In the following, we will derive a method that
as enables us to partly match the moments of the boundary filters

to the ones of the original filters in the filterbank. Our free de-
. 3. . sign parameters are the elements of the matiliteandlU; so
v =Hiz, Z= Z G (5) thatwe need to find restrictions on these matrices that guarantee
. k=1 the desired moment properties.
with
H, =UHy, G,=GU," (6) A. Matching Moments

for k = 1, 2, 3. The matrixUs is chosen a#/ = I, which We formulate the requirements of matching moments as
means that only the boundary filters are to be manipulated. The
optimization of the boundary filters reduces to the optimization
of U; andU 3, where all invertible matrice&’; andU ; satisfy .
the PR constraints. However, if we have a paraunitary filterbaMgth

o =thy?, =0, -1 k=13 (7)

and paraunitaryness is to be maintained, we have to restrict g =H®, D=1 2 Ni]T (8)
andU3; to be orthogonal.
For extremely short segments, the boundary filters for the léf= 0, ..., p—1,k = 1, 3, wherey, denotes the number of con-

and right boundaries merge, aiifl, vanishes. In these casesditions. The vectorggf) contain the actual filterbank responses
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Fig. 2. Truncation of" for M = 2 bands. (a) and (b) Even-length signals of length six. (c) and (d) Odd-length signals of length five.

to polynomial input signals®, and the vectorsgf) contain the B. Increasing the Number of Free Design Parameters

desired responses. Altogether, we may write Equation (9) is quite restrictive in the sense that the responses

of all filters to the given input signats”) have to be specified. To

[v(o) o v(”’l)} _u [ © (1) (H,l)} have greater design freedom, we may wa|_1t to specify only a few
koo Uk Uk kY Yoo Yk of these responses. For example, one might want the moments
Ve e of some bandpass or highpass filters to vanish while imposing

k=1, 3. (9) ho restrictions on the moments of the lowpass filters. This can

be achieved by deleting certain rows of (9). For the specified
Example of the Choice 0,:,;:): To give an example of résponses, this yields parameterizations of the form

the choice ofvfj), we consider a two-channel filterbank, Usree: = U9 v 4 piree NT k=13 (11)
a dc signalt®® = [1,...,1]7, and a vectory, defined
asy;, = [1000), y1(0), yo(1), v1(1)]". Assuming that whereU; *’*“ contains the corresponding rows®f, defined
Yo ho(n) = V2 and >, hi(n) = 0, the desired responsein (10). For the nonspecified responses, we may freely choose
1,50) will typically be defined asq,gm = [V2,0, 2, 0/7. the elements of matrice&;;"****. InterleavinglU;”** and
This means that we aim at designing boundary lowpass aHd ~~**" then yieldsU,.
highpass filters with the same mean valuesd@s) andiy (n),
respectively. In other words, the zero-order moments of t
boundary filters are supposed to match the ones of the originale now look at the problem of finding matric&, that sat-
filters. Following this idea, the desired responsgé for i > 0 isfy both the moment conditions (9) and the orthonormality con-
can be defined according to the propertiesifn) andh(n)  Straints
so that the boundary filters match the moment conditions of the
original ones up to degrge
GivenV;. andY ., the matriced/,. can be described (param-such matrices are energy preserving so that (9) and (12) can
eterized) as only be satisfied simultaneously if the actual respons@sand
the desired ones!” have equal energiegn\” |2 = |ly\”|12.
3 If this condition is not satisfiea priori and orthonormality is
’ (10 desired, one must either change the requireméﬁtsr prescale
where N, contains a basis for the nullspace ¥f such that the boundary filters to meet the energy constraints.
NiY, = 0. Matrix Y7 is the pseudo inverse &fy, and Py, flthO|Ut.'0nS. to thbe prolalerz(gTs,ubjﬁct tZ(Tlf/) (;;(lTstl,?the_n one
is an arbitrary matrix of appropriate size. If the number of cor®f them is given byUy. = A;.B;., where A; [V k]T k=
ditions 1 is small enough to ensure thm;fYk — 1, the re- b is the singular value decompo§|t|on (SVD)¥t.Y;, . The
quirements (9) are fulfilled exactly. Provided that the nullspadBatricesUs, k = 1, 3 computed this way are the solutions to
contains more than just the null vector, the elemeniofay e subspace rotation (Procrustes) problems
be unplerstood as freg design parametgrs, vyhich can be chosen minimize |V — UpY|lr st ULU, =1,
to optimizeU;. according to other criteria. |f is so large that
Y Y4 # I, then (9) will be approximated in the least squareshere || - || denotes the Frobenius norm [20]. iV —
sense, and there will be no further free design parameters &Y || = 0, then the conditions are satisfied exactly. The
optimization. measurd|Vy, — U Y| F with Uy, = AkBkT from above can

I% Orthonormality and Vanishing Moments

Uit = I, E=1,3. (12)

U, =Uy+P,N{ with U=V, Y{, k=1
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Ry

be used as a test to find out whether or not both (9) and (12

can be satisfied simultaneously. w:
Clearly, with an increasing number of conditions@@g, the

solution space decreases, and it might be impossible to sa

isfy both (9) and (12). For the simple ca¥g, = véo) and

Y, = yéo), however, orthogonal matricd$;, generally exist

as long aglv'”||2 = ||l5”||3. Finding the optimal matriceld

with respect to a given criterion and subject to (9) and (12) is

yet another problem that generally requires numerical optimiza

tion. However, a method that allows the moment conditions to

be satisfied approximately (with sufficiently high precision for

practical purposes) while yielding a direct solution to the opti-

mization problem will be presented in Section IV-E.

w, = Fixg vi = UHx

A

&
-

w, =Fxg v, =H,x

Y
2

A

w3 =Fxgp vy = UHyx

A

3

§

Fig. 3. Computation ofv,, andv, fromzg.

signalz as close as possible to the ones computed from the
longer signak g.
By partitioning the vectors into three parts, according to the
description in Section Il, we can formulate objective functions
We assume that a filterbank has been chosen for a given appli-
cation (e.qg., audio or image coding) because of its good proper- ¢UL) = E{Jlvr —wilI}, k=13 (13)
ties. When applying the filterbank to a finite-length input signal,
the boundary filters should have similar properties as the filte
used in steady state. If this is the case, the same bit allocat
can be used at the boundaries and in the interior of the sig
¥thCh is ql_Jlte deswgbl_e_from a practical point of view. If the $(U) =E {||[UkaC _ Fk]l'EHQ}
ilter energies vary significantly in the boundary regions, a tem- T
poral adjustment of the bit allocation (or spatial adjustment in =t {[UkaC — PRy, U H).C — Fi] }
the 2-D case) is needed to avoid effects like spatially varying E=1,3 (14)
noise when reconstructing the signal from its quantized subband
coefficients. Adjusting the bit allocation to avoid such effect¢hereR., is the autocorrelation matrix of the process, and
has been proposed in [21]. In this paper, we design boundafyt denotes the trace of a matrix. Givél,, Hx, andC, the
filters in such a way that their properties become most simil@im is to minimizep(U) through the choice d¥/y., k = 1, 3.
to those of the original filters so that an adjustment of the bit

IV. OBJECTIVE FUNCTION AND BOUNDARY FILTER
OPTIMIZATION

erevy, = U,H,Czxg and w, = Firxg with F =
ﬁT|F§F|F§]T. Fig. 3 gives an illustration of the concept. The
Jective functions finally become

allocation can be avoided. B. Unrestricted Optimization
If no restrictions onl/; are imposed, minimizing(U}) is
A. Objective Function straightforward. The optimal matri; is found to be
To explain the motivation behind the proposed method, we e R
consider a lengthV vector of subband samples computed as U = IR, C" H,, [HkCRmC Hk] . (15)

To see this, we replad€y, in (14) withUy + A, whereA is
an arbitrary matrix, and inself; according to (15) into the
whereF is as in Section Il ang  is a stationary input process.expression obtained. We get

The matrix ", whose rows contain time-shifted, nontruncated T e

versions of the analysis filter impulse responses, describes ¢(Ur) = tr {FrRpr F}, — Fio Ry, Cy H,

the filterbank analysis in steady state. Consequently, the input . [Hka Rme H{] -1 H.CLR,. Ff
vectorz g must be longer thaw whenever the filter length is T T AT

larger than}M . We now look at a lengthiV part in the center of + AHC RO Hy A } ’ (16)
z g, denote it ag, and describe its analysis as

w=Fxg

Clearly, the minimum of (16) occurs fah = 0, which shows
that (15) is the optimum solution to the given problem.
v=UHzx

wherev has lengthV. The vectoe: can be written ag = Cz g, C. Including Moment Conditions

whereC describes the truncation so thatan alternatively be  To include moment conditions during the boundary filter op-

written as timization, we parameterizl;, in the formU; = VkYZT +
PkN;‘C, as described in Section IlI-A. The objective function
v=UHCzg. (14) then becomes

The aim is to minimize the error measur¢ ||v—w||*} for given d(Uy) = { [PkN:,CHka + VY Hi.C), — Fk] R,
input statistics through the choice bf. This means that we - N T
want to make the subband samples computed from the truncated - [PLNHLC, + V.Y H O — Fy } -(A7)
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Fig. 4. Frequency responses of boundary analysis filters designed via Gram—Schmidt method. Pafaimetdrs; ELT prototype, 32 boundary filters. Left:
heo(n), ..., he 1s(n). Right:he 16(n), ..., he s1(n).

Using the same arguments as above, one can show that thevah

timal parameter matrid?;, is given by L 0

Hy = [HyC, Yi],; Fr=[Fy, Vi], L= {0 M} . (23)

The solutions then becomes

. [NTH,CR,,C"HIN,] . (18)
U, = A.BY, k=13 (24)
D. Imposing Orthonormality whereA;, and B, are taken from the SVDs
For paraunitary filterbanks where we demand that matrices
P Y ! A3 BY = (M7 (25)

U, are orthogonal, the optimal matrices according to (14) can
be found via SVDs [13]. To derive the solution, we consilgy,

to be decomposed int,, = LL* (for example, a Cholesky V. EXAMPLES
decomposition). The optimization problem may then be written

as a set of subspace rotation problems [20]: In the first example, we consider a paraunitary, cosine-modu-

lated 16-band filterbank with extended lapped transform (ELT)

minimize ||[UH,C — F]L||% st. ULU, =1, prototype according to [22]. In this filterbank, the subband fil-
_ ters have nonlinear phase so that symmetric reflection tech-
k=1,3. 19 = . :
nigues cannot be applied, and boundary filters must be used.
To solve (19), we compute the SVDs The filter length of an ELT igtA4. The filter alignment for pro-
. oo T T cessing finite-length signals is chosen such that there &fe
Ay By = [HCLL' F{]" = [HiCR,, F} ] (20)  boundary filters on each side of a signal of lengffiZ, where
) ) . K is an integer. The vector of subband samples is defined as
and find the final solutions as
= 0), ... —1(0), ...... K-1),...
Uk _ AkB{, k= 17 3. (21) Yy [yO( )7 s YM 1( )7 ’ yO( )7
ym—1(K — D'
E. Orthonormality and Almost Vanishing Moments The initial boundary filters were designed via the

If both orthonormality and matching moments are to b&ram-Schmidt procedure. The frequency responses of
achieved exactly, numerical optimization may be used. In thise boundary filters (left boundary) are depicted in Fig. 4. In
section, we slightly relax the conditions and look for solutionthis example, the Gram—Schmidt procedure directly yields
that maintain orthonormality but satisfy the moment conditiod®undary filters with relatively good frequency selectivity.
only approximately. However, a weakness of the method is that several boundary

We assume that the moment conditions are stated in sucfiltars, in addition to the lowpass ones, have large nonzero
way that an orthonormal solution exists. That is, the problemean. Thus, when processing signals with a large dc component
U.Y . =V, is supposed to have a solution with an orthogonéior example, in image compression), a significant amount of
matrixU},. We use the objective function (19) and amend it witthe dc component will leak into several bands and may cause
the additional moment conditions as follows: problems with the bit allocation in these bands.

o - Fig. 5 shows the frequency responses of the boundary fil-
minimize || [UyHy,—FilL|% st UiUp=Ix, k=1,3 ters designed with the biorthogonal method proposed in Sec-

(22) tion IV-C. The filters were parameterized according to (9) to
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have one matching moment. During optimization, a white noisesulting filters have ideal behavior for dc signals and good fre-
input process was considered. The plots in Fig. 5 show that tipgency selectivity.
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Since the filter optimization considers only the analysis sidpicted in Fig. 6. These filters, however, do not have vanishing
it is not guaranteed that the synthesis boundary filters, althougioments.
providing perfect reconstruction, are frequency selective andBoundary filters for the given filterbank example were also
behave as desired. To demonstrate that the synthesis boundasigned with the unrestricted and the orthonormal methods
filters have good properties, their frequency responses are datlined in Sections IV-B and D. The results, however, do not
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differ much from the ones obtained with the Gram—Schmidegree) as the original filters in the filterbank. The proposed

method and are not plotted explicitly. Essentially, both of theseethods ensure a minimum number of subband samples and

methods result in dc leakage into several bands. are applicable to both paraunitary and biorthogonal filterbanks.
Finally, orthogonal boundary filters with almost perfect dDesign examples have been presented for cosine-modulated

behavior were designed. For this, the required dc respmﬁc@es filterbanks, as often used in audio compression. It turned

had to be prescaled to meet the energy of the given dc respormgsthat the designed boundary filters have a good frequency

yéo).The optimization was then carried out as described in Sexglectivity so that good coding properties can be expected.

tion IV-E. The obtained lowpass boundary filters were finally

scaled to meet the desired dc responses exactly. Therefore, the
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