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Abstract
This paper presents design methods for boundary fil-
ters for the processing of finite-length signals. In par-
ticular, it is shown how vanishing moments can be
imposed during the design. Applications are found in
segmentation-based audio and shape-adaptive image
compression.

1 Introduction

Multirate filter banks are widely used in audio and
image compression. In segmentation-based audio cod-
ing, the input signal is divided into finite-length blocks
and each block is encoded separately. This strategy al-
lows one to easily adapt the bit allocation to different
segments of the input signal and to directly access parts
of the encoded bitstream. Also, by placing the seg-
mentation right in front of attacks one can avoid the
problem of pre-echoes [1]. To achieve a high compres-
sion ratio, the decomposition scheme should be non-
expansive, which means that the total number of sub-
band samples produced from a segment has to be equal
to the number of input samples in that segment.

In image compression, multirate decompositions
of arbitrarily shaped regions are of significant im-
portance, because they allow object-based rather than
frame-based data access. As in the decomposition of
one-dimensional (1-D) signals, the problem of achiev-
ing non-expansive subband decompositions occurs. Be-
cause the objects describing a scene may occur with
any shape, the transforms used for compression need
to be able to operate on arbitrarily shaped regions of
support while maintaining a high compaction gain.

The aim of this paper is to present novel solutions
to the problem of optimizing the boundary filters for
non-expansive subband transforms. In particular, we
address the problem of imposing moment conditions
on the boundary filters. The methods presented are not
restricted to certain signal lengths or filter characteris-
tics.

2 Construction of Boundary Filters

The use of boundary filters for achieving support-
preservative subband decompositions of finite-length
signals has been proposed in [2–8]. Unlike circular con-
volution [9] or symmetric reflection [10], boundary fil-
ters are not restricted to particular signal lengths or fil-
ter properties such as linear phase.

2.1 General Considerations

The subband decomposition of a length-N signal x
can be written as

y =Hx (1)

where the matrix H describes the convolution of the
input signal with the analysis filters and the down-
sampling operation. The vector y contains the subband
samples. The synthesis operation can be written as

x̂ = Gy: (2)

The filter operations can be divided into three parts,
namely the processing of the left and right boundaries
with boundary filters and the processing of the interior
of the signal with the original filters. Correspondingly,
the matrices can be partitioned as follows:

H =
h
HT

1 jHT
2 jHT

3

iT

G = [G1jG2jG3] ;
(3)

where H1 and G1 contain the boundary filters for the
left-hand andH3 andG3 contain the ones for the right-
hand side. For the analysis and synthesis operations in
partitioned form we get

yk =Hkx; x̂ =

3X
k=1

Gkyk; (4)

where vectors yk are the corresponding partitions of y.
If the PR conditionGH =HG = I is satisfied, the

submatrices satisfy HkGk = I , where I is an identity



matrix of appropriate size. Terms of the form GkHk

describe projections (not necessarily orthogonal ones)
onto the column spaces of Gk. If we want to replace
one of the matricesGk by a new (better) matrix ~Gk, we
also need to replace the corresponding analysis parti-
tionHk by a new matrix ~Hk. The matrices have to sat-
isfy ~Hk

~Gk = I and ~Gk
~Hk = GkHk. Hence, we see

that bothGk and ~Gk must have the same column space
and that the columns of ~Gk can be written as a linear
combination of those of Gk. With invertible quadratic
matrices U k this can be expressed as ~Gk = GkU

�1
k .

For the analysis side, it means that ~Hk = UkHk. One
would want to manipulate only the boundary filters, so
that the modified analysis and synthesis equations may
be written as

vk = ~Hkx; x̂ =

3X
k=1

~Gkvk (5)

with U 2 = I . The optimization of the boundary fil-
ters reduces to the optimization of U 1 and U 3. All in-
vertible matrices U 1 andU 3 satisfy the PR constraints.
However, if paraunitaryness is to be maintained, U 1

and U 3 have to be orthogonal.
Initial solutions for the matrices H1, H3, G1, and

G3 that guarantee PR can be found via the Gram-
Schmidt procedure as outlined in [3]. To explain this,
we consider a filter bank analysis described as y =

F xE , where the vector y contains the subband samples
that are to be computed. The rows of F contain non-
truncated, time-shifted and flipped versions of the anal-
ysis filters’ impulse responses.F is rectangular and the
length of xE is larger than the length of y. The next step
is to truncateF to anN�N matrix. Fig. 1 illustrates the
truncation for a two-band decomposition of a length-8
signal. Given the truncated matrix, the method in [3]
can be applied to design the required sub-matrices H k

andGk. The matricesH2 andG2 still contain the orig-
inal impulse responses. The design method can be ap-
plied to both paraunitary and biorthogonal filter banks.
The result of the Gram-Schmidt procedure is somewhat
arbitrary, and one cannot expect to design boundary fil-
ters with good properties this way, so that further opti-
mization is needed.

2.2 Vanishing Moments

When applying a filter bank to a finite-length sig-
nal by using boundary filters, the problem occurs that
the boundary filters will usually not satisfy any moment
conditions, even if the original filters do. In the follow-
ing we will derive a method that enables us to restore
vanishing moments for the boundary filters. Our free
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Fig. 1. Truncation of F .

design parameters are the elements of the matrices U 1

and U 3, so that we need to find restrictions on these
matrices that guarantee the desired moment properties.
We formulate the requirements as

[v
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(I�1)
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(6)
where a vector y(i)k =Hk t

(i) is the response to a poly-

nomial input signal t(i) =
�
1i; 2i; : : : ; N i

�T
, and where

v
(i)
k = Uky

(i)
k is the desired response to this signal. For

example, in the case of a two-channel filter bank, a DC
input signal, and four boundary filters in H 1 it is desir-
able to have

v
(0)
1 := [

p
2; 0;

p
2; 0]T := U 1H1 t

(0);

where it is assumed that
P

n h0(n) =
p
2 andP

n h1(n) = 0. Similarly, the desired responses v(i)k
for i > 0 can be defined according to the properties
of h0(n) and h1(n).

Given V k and Y k the matrix U k can be described
(parameterized) as follows:

Uk = U o
k +P kN

T
k with U o

k = V kY
+
k ; (7)

whereNk contains a basis for the nullspace of Y k such
that NT

k Y k = 0. The matrix Y +
k is the pseudo inverse

ofY k, andP k is an arbitrary matrix of appropriate size.
If the number of conditions in (6), denoted as I , is small
enough to ensure that Y +

k Y k = I , the requirements (6)
are fulfilled exactly. Provided that the nullspace con-
tains more than just the null vector, the elements of P k

may be understood as design parameters, which can be
freely chosen to optimize U k according to other crite-
ria. If I is so large that Y +

k Y k 6= I , then (6) is ap-
proximated in the least squares sense, and there are no
further free design parameters for optimization.
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Fig. 2. Computation ofwk and vk from xE .

Don’t Care Values

The equation (6) is quite restrictive in the sense that
the responses of all filters to the given input signals t(i)

have to be specified. To have greater design freedom,
we may want to specify only a few (important ones) of
these responses and leave the others as don’t care val-
ues. This can be achieved by deleting certain rows of
(6). For the specified responses this yields a parameter-
ization of the form

U
spec.
k = U

o;spec.
k +P spec.

k NT
k (8)

The ones without specification are simply parameter-
ized as

U
unspec.
k = P

unspec.
k (9)

Interleaving U spec.
k and U unspec.

k then yields U k.

2.3 The Objective Function

We assume that a filter bank has been chosen for
a given application (e.g. audio or image coding) be-
cause of its good properties. When applying the filter
bank to a finite-length input signal, the boundary fil-
ters should have similar properties as the filters used in
steady state. If this is the case, the same bit allocation
can be used at the boundaries and in the interior of the
signal, which is very much desirable from a practical
point of view. Otherwise, a spatial adjustment of the
bit allocation is needed to avoid effects like spatially
varying noise when reconstructing the signal from its
quantized subband coefficients [8]. In this section, we
design boundary filters in such a way that the subband
samples produced by these filters resemble (as much as
possible) the ones that would be produced by the origi-
nal filters.

We consider a length-N vector of subband samples
computed as w = FxE with F as in Section 2.1 and
xE being a stationary input process. The vector xE is
longer thanw and the matrixF describes the filter bank
analysis in steady state. We also consider a length-N
part of xE , denoted as x, and describe the analysis of x

as v = UHx where v has length N . The vector x can
be written as x = CxE , so that v = UHCxE . The
aim is to minimize the error measure Efkv �wk2g for
given input statistics through the choice of U . When
partitioning the vectors into three parts, as explained
earlier, we have to minimize

�(U k) = Efkvk �wkk2g; (10)

where vk = UkHkCxE and wk = F kxE with F =

[F T
1 ;F

T
2 ;F

T
3 ]

T . Fig. 2 gives an illustration of the con-
cept. The objective function finally becomes

�(U k) = trf[UkHkC � F k] Rxx [UkHkC � F k]
T g

(11)
whereRxx is the autocorrelation matrix of xE .

For the case that no further restrictions are imposed
on U k, it can be shown that the optimal matrix U k is
given by

Uk = F kRxxC
THT

k

h
HkCRxxC

THT
k

i
�1

: (12)

To include moment conditions, we replace U k in
(11) by U k = V kY

+
k +P kZ

T
k . One can prove that the

optimal matrix P k then becomes

P k = [F k � V kY
+
kHkC]RxxC

THT
kNk

�
h
NT

kHkCRxxC
THT

kNk

i
�1

(13)
For paraunitary filter banks where matrices U k are

demanded to be orthogonal, the optimal matrices can
be found via a singular value decomposition (svd). This
solution to the boundary filter optimization problem has
first been presented in [4]. To explain the steps, let us
decompose Rxx into Rxx = LLT . The problem may
then be written as a subspace rotation problem [11]:

minimize k[U kHkC � F k]Lk2F s.t. UT
kUk = I :

(14)
The next step is to compute the svd U�V

T =

[HkCLL
TF T

k ]
T and to derive the final solution as

Uk = UVT .
If both orthonormality and vanishing moments are

wanted, no direct solution is available, and the desired
parameters have to be found via numerical optimiza-
tion. This can e.g. be done by using the parameteriza-
tion (7) to ensure the vanishing moments and adding
the orthogonality constraints

UT
kUk = I

to the objective function via the Lagrange multiplier
technique.
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Fig. 3. Frequency responses of optimized boundary filters
(M = 16 bands, 32 boundary filters).

2.4 Application in 2-D

In addition to simplifying the bit allocation in the
boundary regions, the above optimization is also ad-
vantageous for 2-D shape adaptive schemes. In 2-D,
the alignment of boundary filters operating on adja-
cent rows/columns that start or stop at different posi-
tions has to be taken into account. Filtering in one di-
rection should cause minimal distortion in the second
one. Thus, optimizing boundary filters for the 1-D case
and using them in a 2-D shape adaptive scheme does
not guarantee overall optimality. By properly aligning
the filters in the interior of a region and optimizing the
boundary filters according to the algorithm above, min-
imal distortion occurs in the second dimension.

3 Results

We consider a cosine-modulated 16-band filter bank
with ELT prototype [12]. In this filter bank, the sub-
band filters have non-linear phase, so that symmetric
reflection techniques cannot be applied and boundary
filters must be used. The frequency responses for the
optimized boundary filters (left boundary) are depicted
in Fig. 3. During optimization, a white noise input pro-
cess has been considered. We see that the optimization
yields filters with ideal behavior for DC signals, as de-
manded via Eq. (6). Also the frequency selectivity is
good, so that that good coding properties can be ex-
pected.

4 Conclusions

In this paper, closed-form solutions for designing
optimal boundary processing have been presented. All

methods maintain critical sampling and are applica-
ble to both paraunitary and biorthogonal filter banks.
A design example has been presented for a cosine-
modulated filter bank, as often used in audio compres-
sion, and it turned out that the designed boundary filters
have a good frequency selectivity, so that good coding
properties can be expected. The method can also be ap-
plied to design 2-D region-based wavelet transforms.

References
[1] J. Kliewer and A. Mertins, “Audio subband coding with

improved representation of transient signal segments,” in
Proc. European Signal Processing Conference, Rhodos,
Greece, pp. 2345–2348, Sept. 1998.

[2] R. L. de Queiroz, “Subband processing of finite length sig-
nals without border distortions,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, San Francisco, USA,
vol. IV, pp. 613 – 616, Mar. 1992.

[3] C. Herley, “Boundary filters for finite-length signals and
time-varying filter banks,” IEEE Trans. Circuits and Sys-
tems II, vol. 42, pp. 102–114, Feb. 1995.

[4] A. Mertins, “Time-varying and support preservative filter
banks: Design of optimal transition and boundary filters
via SVD,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, Detroit, pp. 1316–1319, May 1995.

[5] R. L. de Queiroz and K. R. Rao, “Optimal orthogonal
boundary filter banks,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, Detroit, USA, vol. II, pp. 1296
– 1299, May 1995.

[6] M. Coffey, “Boundary compensated wavelet bases,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
München, pp. 2129–2132, May 1997.

[7] A. Mertins, “Optimized biorthogonal shape adaptive
wavelets,” in Proc. IEEE Int. Conf. Image Processing,
Chicago, vol. 3, pp. 673–677, Oct. 1998.

[8] V. Nuri and R. H. Bamberger, “Size limited filter banks for
subband image compression,” IEEE Trans. Image Process-
ing, vol. 4, pp. 1317–1323, Sept. 1995.

[9] J. Woods and S. O’Neil, “Subband coding of images,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 34,
pp. 1278–1288, May 1986.

[10] L. Chen, T. Q. Nguyen, and K. P. Chan, “Symmetric ex-
tension methods for M -channel linear-phase perfect re-
construction filter banks,” IEEE Trans. Signal Processing,
vol. SP-43, pp. 2505–2511, Nov. 1995.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations.
Baltimore: John Hopkins University Press, 3rd ed. 1996.

[12] H. S. Malvar, “Extended lapped transforms: Fast algo-
rithms and applications,” IEEE Trans. Signal Processing,
vol. 40, Nov. 1992.


