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ABSTRACT Another class of algorithms uses the time structure of the

For the separation of convolutive mixtures, an often used a separated bins. The assumption of high correlation in Reigh

proach is the transformation to the time-frequency domai IQ[)orlng bins has been used for the definition of a depermuta-

where the problem is reduced to multiple instantaneous mi
tures. This allows for the employment of well-known ICA
algorithms. The drawbacks of this method are the inhere
permutation and scaling problems. These ambiguities ha

to be corrected before a transformation back to the time do- ents. In this paper, we propose a modification of this al-

main can be carried out. The scaling ambiguity is usuallygorithm with the aim of simplified formulation and reduced
solved using the minimal distortion principle. For the per_calculatlon, while maintaining the same overall separatio

mutation problem, several approaches have been proposé)(?_rformance.

In this paper we propose a modification of an existing algo-
rithm with the aim of simplifying the depermutation criteni 2. MODEL AND METHODS
and the corresponding computational effort while maintain2 1 BSSfor instantaneous mixtures

ing the same performance.

E}ion criterion in [11]. In [12] the authors propose to model

every bin using a generalized Gaussian distribution (GGD)
nd to employ the small differences of the parameters be-

Gz/een neighboring bins for a calculation of correct assign-

The instantaneous mixing process &f sources intoNV
observations can be modeled by & x N matrix A.

1. INTRODUCTION Neglecting the measurement noise, a given source vector

Different methods of independent component analysis (ICAF(7) = [s1(n), ..., sn(n)]” is transformed to an observa-
and blind source separation (BSS) have been proposed f8¢n x(n) = [z1(n), ..., zn(n)]" by

the separation of linear instantaneous mixtures[1, 2, 3fh W

real-world mixtures of audio signals, the situation beceme x(n) = A -s(n). 1)

more complicated. As the signals arrive multiple times with _ ] ) o )
different lags, the mixing process is convolutive. Usudtly ~The separation process is again a multiplication with an un-
can be modelled using FIR filters, but for realistic scersario MiXing matrix B:
the length of the filters can reach up to several thousand. The
task of BSS is then to estimate a system of unmixing filters, y(n) =[1(n),....,yn(n)]" =B x(n) )
which ideally have at least the order of the mixing filters. ) ) o

There exist methods for calculating such filters directlyThe only sources of information for estimatidg are the
in the time domain [4, 5]. The drawback of these methods istatistical properties of the observed signa(s). When
the high computational cost and difficulties of convergenceBA = DII with IT being a permutation matrix arid an
A much more promising way is the transformation of the sig-arbitrary diagonal matrix, the separation is successfiie T
nals to the time-frequency domain where the convolution betwo matrices represent the ambiguities of BSS: (1) The or-
comes a multiplication [6]. Using this approach, an instander of the separated signals is arbitrary, and (2) they dge on
taneous ICA method can be applied to each frequency bifcaled versions of the sources. N _
independently. The problems arising from this approach are In the present work, for learning unmixing matrices
the arbitrary scaling and permutation in every bin. WithoutB, we use the well-known gradient-based update rule [1]
correction of the scaling ambiguity the restored signaés arBrx+1 = By + ABj, with
arbitrarily filtered, but with the minimal distortion priie,

proposed in [7], an acceptable solution is found. AB =u(I-FE {g(y)yH})Bk 3)
The correction of the different permutations is even more
important, as otherwise the whole separation process wikndg(y) = [9:(v:),---,9n(yn)] being a component-wise

fail. There have been proposed different approaches fer thivector function of nonlinear score functiong(s;) =
problem. One class of algorithms utilizes the properties of-p;(s;)/pi(s:), wherep;(s;) are the assumed source prob-
the unmixing matrices. In [8] the authors propose to usebility densities.

these as beamformers. With the calculation of the direction It is necessary to know, or at least well approximate,
of arrival, depermutation could be achieved for most of thehe probability density functions of the sources in order to
bins. In [9] and [10], the authors propose an alternative forachieve good separation performance. In [13] the authors
mulation with the use of directivity patterns. use the GGD with some fixed parameters, while in [14] the
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parameters are estimated on the basis of the separatetssigne
after each iteration of (3).

With the GGD defined as
__ B e e T

0 . . . . . . . . .
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Bin number

with a,, 8 > 0 andI'(-) being the Gamma function given by
- Figure 1: Beta values of two signals over the frequency in-
I(y) = / 2V le=T gy (5) dex. The detected clusters are indicated with balrs
0

of the sources is recovered. In [17] the authors proposed to
use inverse postfilters for restoring the signals as theg hav
been recorded by the microphones. This approach accepts

gi(zi) = ENERCE ®)  the filtering done by the mixing system without adding new

’ distortion. In [7] a similar method was proposed which is

For the complex case the GGD is assumed to be sphericadlled the minimal distortion principle. Newer approaches
symmetric in the z-plane around the origin. This assumpsolve the scaling ambiguity with the aim of filter shortening
tion yields the same nonlinear score function as in (6). Th¢l8] or shaping [19]. In the following, we use the unmixing
validity of this approach is shown in [15]. matrix

the nonlinear score function reduces to

W' (w) = diagW 1 (w)] - W (w), (11)

_ _ o which corresponds to the method in [7], with diggeturn-
For real-world acoustic scenarios, the mixing model has téng the argument with all off-diagonal elements set to zero.
be modified due to the convolutive properties. It can be mod-

2.2 Convolutive mixtures

eled by FIR filters of lengtti. whereL can go beyon@000, 3. DEPERMUTATION ALGORITHM
depending on the sampling rate and reverberation time. The o ) . _
convolutive mixing model reads There exist different methods [17, 11] which utilize thethig
correlation of neighboring bins. With (w, 7) = |Y (w, 1),
L—1 the correlation between two biksand! is defined as
x(n) =Y H(l)s(n—1) () B 7 V(wr, T)Vp(wi, 7)
1=0 Pap(Wi, wi)

VST Ve ) S V)
12)
#herep, ¢ are the indices of the separated sign®lgws, 7)
is the gth element ofV (wy, ), and 7 is the number of
frames. The decision on aligning the bins is made on the
basis of the ratio

whereH(n) is a sequence d¥ x N matrices containing the
impulse responses of the mixing channels. For the separ
tion, one can use FIR filters of lenglf > (N—1)(L—1)+1
[16] and obtain
M—
Y(n) = Z W(l)x(n - l) (8) ppp(wk, wl) + pqq(wk, Wl)
1= TRl = .
Ppq (Wi, wi) + pgp (Wi, wi)

[

(13)

with W(n) containing the unmixing coefficients. It is assumed that withy,; > 1 the bins are correctly aligned

The direct estimation oW (n) in the time domain is very X : .
difficult due to the large number of coefficients. The exist-2nd otherwise a permutation has occurred. The problem aris-

ing approaches [4, 5] are not satisfying because of distort ing here is that the assumption of highly correlated bins can
introduced by the unmixing system. To circumvent this prob-nOt always be made, especially when the bins are poorly sep-

lem, an approach in the time-frequency domain is often use&trated. In [11] the authors proposed to use a dyadic sorting

Using the blockwise short-time Fourier transform (STFT),Scheme. They start with pairwise comparisons and then ar-
the convolution becomes a multiplication [6]: range these pairs to new larger groups. By repeating this pro
cedure recursively, all bins can be grouped, and single fals

Y (wi, 7) = W (wi) X (i, 7). 9) permutations do not unbalance the overall structure. Unfor
tunately, this is not true if too many errors occur in thegarl
With this formulation, the coefficients for each frequensy b stages.
can be estimated separately. This simplification comeseatth  In [12], the authors propose an alternative strategy. The

price of each frequency bin being differently scaled and permain difference is the calculation of the starting clusters
muted: which are then depermuted using a correlation approach sim-

ilar to the one mentioned above. Although not all bins are
Y (wi, 7) = W(wg) X (wg, T) = D(wi)II(wi) S (wk, T) sorted in the first step, the calculated clusters have omly co
(10)  rectassignments. Using such clusters, the subsequeritdyad
whereII(w) is a frequency-dependent permutation matrixsorting is much more effective.
and D(w) is an arbitrary diagonal scaling matrix. If the The idea is to model every frequency bin using the GGD
permutations are not corrected, the whole separation psoceand to use the small differences of the parameteaad in
will fail, as parts of all signals can appear in every outputneighboring bins for defining a depermutation criterion. In
channel. Without correcting the scaling, a filtered versiorFigure 1, such a situation is shown. Here we Seealues
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for the two signals and marked areas where the clustering *
procedure was successful.

The clustering procedure as described in [12] is imple-
mented independently for both parameterand 3. After o
building the clusters, the overlapping parts are used tatere

— —_—
larger ones. This way, more bins are assigned in fewer clus--2 o s s s s s sen sem a0
ters, which is a better starting point for the depermutation Bin number
using the correlation coefficients. (a)

The rules for clustering in [12] have the following style:  4— ‘ ‘ ‘ | | | | .
di
Br(w)) > ki Bu(w) (14) o By
and  fBu(wiy1) > ki Pr(wier) .
with —_—
ﬁH (w) _ max [ﬁ(w, p), ﬁ(w, q)] (15) 3780 3800 3820 3840 Binsnsuergber 3880 3900 3920 3940
fr(w) = min[(w,p), Bw,q)] (16) (b)

and some constaiit;. If (14) is fulfilled, the next bin can

be added to the cluster. For clustering using the parameter 2
«, a similar procedure is utilized, but due to different prop-
erties, the logarithm of the values is used. Overall theee ar °
eight equations with nine constants which makes the proce-
dure quite complicated. B

—_—

Il Il Il Il Il
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Bin number

Il Il Il Il
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4. NOVEL ALTERNATIVE FORMULATION

Here we propose to use an alternative formulation that mak
Instead of comparin

the calculation drastically easier.
Bu(w;) andpy (w;), we use the difference:

ﬁP(I(w) = ﬁ(W,p) - ﬁ(wv Q) (17)

For the clustering using the parameter, we define corre-

spondingly
apg(w) = logla(w, p)] — logla(w, g)] (18)
The values of3,;(w) anday,, (w) are quite similar in ad-

(©

ew algorithm usings. (c) Joint algorithm.
For clustering using, we propose correspondingly:

§igure 2: Detected Clusters. (a) New algorithm usingb)

ad, (Wi+1) = —apg(wi—1) + 2apg(wr) — apg(wit1) (24)

aq, (Wi41) = —apg(wi—1) + 2apg(wr) — agp(wit1) (25)
In Figures 2(a) and 2(b), the results for a real-world case

are shown. As one can see, the valugsandjy, are quite

small for almost all frequency bins, while the valygs and
ayq, are large for most of the frequencies. Since small

jacent bins. Therefore it is possible to make a predictio@nd34, and large,, andag, indicate equal permutations of

based on preceding bins. With,.cq  (w) being the pre-
dicted value, the comparison of

(19)
(20)

Ba, (wit1) ﬁpredm (wWi41) = Bpg(wit1)
Baz (wit1) Bpred,,, (Wit1) = Bgp(wiv1)

yields a depermutation criterion. Whefy, and 34, dif-

fer substantially, then the correct permutation can berdete

mined. The ratio

_ Bay(wig1)
Ba, (Wis1)

shows the correct permutation. With < 1 the bins are

correctly aligned and; > 1 indicates a permutation. For

Tl (21)

adjacent bins, this means that the method correctly idestifi
most permutations as correctly aligned. Thus, using either
or 3, most of the bins can be clustered, as marked with the
underlying bars. The next step according to [12] would be to
join both cluster types by estimating overlapping parts.

In this paper, we use another approach. With

T
Zpg(w) = [O‘pq(w)7 51%1(”)}

Oa o3
ando, andog being the standard deviations teg, andj,,
respectively, a joint criterion can be derived. For this, we
define

(26)

more reliable clustering, an error margin is advisable,re@he Ar(wis1) == zpg(wi—1) + 22pq(w1) = Zpg(wWit1)le, (27)

the comparisong < 1/p andr; > p with p > 1 are used.
For the prediction oﬁpredm (w), alinear predictor can be

Ag(wit1) = [|= Zpg(wi-1) + 22pg(w1) — Zgp(wit1)le, (28)

used. Some tests with different lengths showed that even ve The final decision is made in analogy to (21) on the basis
short linear predictors deliver good results. Using lorier Aq(wig1)
ear predictors can be better for particular signals, but the = m (29)

2 +1

the generalization suffers. Therefore we use a linear predi
tor with two coefficients which just do a linear extrapola- with r; < 1/p showing correct alignment and > p indi-
tion. The prediction error under the two possible permutacating a permutation.
tions then reads The new algorithm now depends on just one parameter
p. In Figure 2(c) the resulting clustering for this method is
Bay (wi1) = —Bpg(wi-1) + 2Bpg(wi) — Bpg(wit1), (22)  shown. Especially, some bins could be clustered which had
B, (Wig1) = —PBpg(wi—1) + 2B8pg(wr) — Bgp(wit1). (23)  been left out by the single approaches.
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Table 1: Comparison of cluster sizes using the algorithms

from [12]. Only clusters with size larger than eight are
counted.
Number | Clustered| Avg. Cluster
bins Sizes
a-Cluster 92 3085 33.53
B-Cluster 90 3236 35.96
Res. Cluster 62 3402 54.87

Table 2: Comparison of cluster sizes using the new algo-
rithm. Only clusters with size larger than eight are counted

Number | Clustered| Avg. Cluster
bins Sizes
a-Cluster 106 3371 31.80
(B-Cluster 98 3159 32.23
Joint Cluster 71 3706 52.20

5. SIMULATIONS

(5]

(6]
(7]

(8]

(9]

The simulations have been performed using data availabléOl
at [20]. This data set consists of eight seconds long speech
recordings sampled at 8 kHz with individual contributions
from the sources to the micropohones. The chosen parame-
ters were a Hanning window of length 2048, a window shift[11]
of 256, and an FFT-length of 8192. After 400 iterations of
(3), the depermutation has been performed using either the
old or the new algorithm for the first clustering stage. The
following stage of cluster correlation was carried out gsin [12]
the method from [18].

The results of the algorithm from [12] are shown in Ta-

ble 1. The results for the new algorithm are given in Table 2.
They show that even more bins could be clustered, but thgt3]
the average cluster size is slightly smaller. This is duééo t
effect of additional small clusters which actually imprakie
performance. The next step, in which the cluster permuta-
tions are aligned using the correlation approach desciibed [14]
[18], could depermute all bins. The overall separation per-
formance for channels 1 and 2 from [20] wis07 dB.

6. SUMMARY

In this paper we have proposed a modification of a deper-
mutation algorithm that is used in convolutive blind source

separation. The depermutation criterion is greatly sifigolj

while the overall performance is maintained. Results have
been shown using real-world data.
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