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An Approach for Solving the Permutation Problem
of Convolutive Blind Source Separation Based
on Statistical Signal Models

Radoslaw Mazur and Alfred Mertins, Senior Member, IEEE

Abstract—1In this paper, we present a new algorithm for solving
the permutation ambiguity in convolutive blind source separation.
Transformed to the frequency domain, existing algorithms can ef-
ficiently solve the reduction of the source separation problem into
independent instantaneous separation in each frequency bin. How-
ever, this independency leads to the problem of correctly aligning
these single bins. The new algorithm models the frequency-domain
separated signals by means of the generalized Gaussian distribu-
tion and employs the small deviation of the parameters between
neighboring bins for the detection of correct permutations. The
performance of the algorithm will be demonstrated on synthetic
and real-world data.

Index Terms—Blind source separation (BSS), convolutive mix-
ture, frequency-domain ICA, permutation problem.

1. INTRODUCTION

LIND source separation (BSS) is a method to recover sig-
B nals from observed mixtures of different sources without
knowledge of the sources or the mixing system. A number of
efficient approaches have been proposed for the case of linear
instantaneous mixtures [1]-[3].

The situation becomes more difficult when we apply these
approaches to real-world mixtures of human speech. In a re-
verberant environment, the signals arrive multiple times with
different time lags. Thus, the mixing process is convolutive and
must be modeled by applying room transfer functions. Modeling
the room transfer functions, however, requires filters with thou-
sands of taps in realistic scenarios. BSS includes estimation of
an inverse system of filters which usually have similar or even
greater lengths.

One possibility to solve the convolutive blind separation
problem is to calculate the unmixing filters directly in the time
domain [4], [S]. However, this approach results in high com-
putational cost and often shows difficulties with convergence,
because the algorithm can get trapped in one of the many local
minima of the objective function. Another method is to trans-
form the signals to the frequency domain, so that convolution
becomes a multiplication [6]. However, if all frequency bins are
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separated independently, the discrete bins usually have different
scalings, and they can be arbitrarily permuted. One method to
avoid such problems is to use a frequency-domain separation
criterion, but to restrict the time-domain impulse responses of
the unmixing filters to a certain maximum length [7], which
means that the coefficients for all frequency bins have to be
modified jointly. Similar to the direct time-domain approaches,
the objective function shows many local minima in which the
algorithm can get trapped [8], and a good initialization is often
essential to achieve good performance.

Another class of frequency-domain methods solves the blind
separation problems independently in the various frequency
bins and then deals explicitly with the scaling and permu-
tation ambiguities in a subsequent processing step. In these
algorithms, the separation step in the individual frequency
bins often converges very fast with good bin-wise separation
performance, and the main task is to scale and group the com-
ponents that stem from the same source. The scaling problem
can be satisfactorily addressed using the postfilter method
proposed in [9]. Using inverse postfilters allows us to recover
the signals as they have been recorded at the microphones. This
method accepts the filtering done by the mixing system while
ensuring that the unmixing system will not add any further
distortions. There are different methods to deal with the permu-
tation problem. One possibility is based on the assumption that
neighboring bins have a similar time structure [10]. Correlation
coefficients for signals in neighboring bins thus yield a criterion
for correct permutation. In [11], the authors used the amplitude
modulation correlation for getting a separation criterion which
avoids the permutation problem. Other approaches employ the
unmixing matrices as beamformers [12] or look at the general
directivity patterns [13], [14]. For example, it has been shown
in [12] that most of the bins can be aligned properly after the
directions of arrival have been computed. However, computa-
tion becomes a difficult matter with more than two sensors in
a nonuniform array. In [15], the authors of [12] extended their
approach to three dimensions. By using near-field and far-field
models, a separation of multiple sources was possible [16].

The method proposed in this paper belongs to the class of
algorithms in which bin-wise separation is followed by explicit
depermutation. In particular, we propose a new way to explicitly
solve the permutation problem based on the statistics of the sig-
nals. Our algorithm models the discrete frequency bins using the
generalized Gaussian distribution (GGD) and employs the tiny
differences of the parameters of the GGD between neighboring
bins for aligning permutations. We draw on our previous work in
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[17], where we proposed to use the 3-parameter of the GGD and
extend this to the use of more than one parameter. While the al-
gorithm of [17] showed very promising results on synthetic data,
it often failed on the lower frequencies of real-world recorded
speech examples. The 2-D extension proposed in this paper per-
forms much better and is able to tackle most drawbacks of the
previous method. The new clustering method is able to cluster
more bins and double the average cluster size. The overall per-
formance is much improved and especially the problematic low
frequencies are handled much better.

The information exploited in our approach is entirely dif-
ferent from the directivity information used in [12]-[15]. Thus,
in future works it may be possible to combine the proposed
signal-statistics-based method with the beamforming paradigm
and further improve the performance of depermutation algo-
rithms.

II. MODEL AND METHODS

A. BSS for Instantaneous Mixtures

In the instantaneous case, the mixing process of [N sources
into N observations can be modeled by an N x /N matrix A.
Given the source vector s(n) = [s1(n),...,sn(n)]T and as-
suming negligible measurement noise, the vector of observation
signals can be described as x(n) = A -s(n). The separation can
be written as a multiplication with an N X [N matrix B, resulting
inavectory(n) = B-x(n) of unmixed signals. The aim of BSS
is to find B from the observed process x(n) so that BA = DII,
where II is a permutation matrix and D an arbitrary diagonal
matrix. These matrices represent the two ambiguities of BSS:
1) the separated signals appear in arbitrary order and 2) they are
scaled versions of the sources.

We here consider the well known gradient-based update rule
[1] Bk+1 = B, + ABj, with

ABy, = (I — E{g(y)y" })Bx ()

and g(y) = (9i(¥i),---,9n(yn)) being a component-wise
vector function of nonlinear score functions g;(s;) =
—pi(si)/pi(si), where p;(s;) are the assumed source prob-
ability densities. These should be known or at least well
approximated in order to achieve good separation performance
[18].

B. Statistical Source Models and Estimators

Speech signals usually contain many small and few large
values, and their amplitude statistics in voiced activity intervals
can be reasonably well approximated by a Laplacian probability
density functions (pdf) [19]. For a Laplacian pdf, the nonlinear
function g( - ) reduces to

oly) = B0 )

ag

However, when speech pauses are also considered, the observa-
tion of Laplacian pdf no longer holds, and a sufficient approxi-
mation can, for example, be achieved by the GGD [19]

B (i) 3)

with a, 8 > 0.1In (3), I'( - ) is the Gamma function given by
I'(y) = / Ve da. 4)
Jo

The (-parameter of the GGD describes the sparsity of the dis-
tribution. With 8 = 2 the GGD reduces to a standard Gaussian
distribution and with 3 = 1 to a Laplacian distribution. The pa-
rameter « is the generalized measure of the variance and is also
called dispersion or scale parameter. For the Gaussian distribu-
tion, « reduces to the known standard deviation o.

Using the GGD, the nonlinear function g;( - ) becomes

gi(w;) = |z sgn(z;) (5)

and with sgn(z) = (z/|z|), the expression reduces to

;
gi(w;) = e (6)

By applying this nonlinear function, even mixtures of sub-
and super-Gaussian signals can be separated, as [18] shows. The
approach of [18] has been further extended in [20], where an
adaptive algorithm for determining [ from the statistics of the
separated signals was proposed. The authors used the method of
moments [21] to estimate /3 after each iteration of (1) and used
this new value for the next step. This approach leads to improved
performance in terms of both separation and convergence.

Besides the method of moments, further estimators for the pa-
rameters of the GGD have been studied in [22]. These include a
generalized entropy matching estimator and a maximum likeli-
hood estimator. It was found that the maximum likelihood esti-
mator performs best for small sample size and small 3, whereas
the generalized entropy matching estimator is best for large 3.
For large sample size, all estimators performed equally well.

C. Convolutive Mixtures

The mixing channels in acoustic real-world scenarios can be
modeled using finite-impulse response (FIR) filters of length L,
where L can exceed 2000, depending on the reverberation time
and sampling rate. The convolutive mixing model reads x(n) =

ILZ_OI H(l)s(n — 1), where H(n) is a sequence of N X N ma-
trices containing the impulse responses of the mixing channels.
For the separation, one can use FIR filters of length M > (N —
1)(L — 1) 4+ 1 [23] and obtains y(n) = f\igl W()x(n —1)
with W(n) containing the unmixing coefficients. There exist
approaches to estimate W (n) in the time domain [4], [5], but
the results are often unsatisfactory due to distortions that result
from the unmixing system.

In frequency domain approaches, the convolution is turned
into multiplication by means of the blockwise short-time
Fourier transform (STFT) [6]. For frequency wy, one can write

Y (wr,7) = W(wg) X (w, ) (7

where X (wg, 7) and Y (wg, 7) are the STFTs of x(n) and y(n)
in frame 7, respectively, and W (w) is the discrete-time Fourier
transform of the sequence W (n). Rather than estimating all co-
efficients at once, it is now possible to separate the sources in
each frequency bin independently. However, a major drawback
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of this method is that in each frequency bin wj, only scaled and
permuted versions of the signals can be estimated

Y(wa) = W(wk)X(wk./T) = D(wk)H(wk)S(wk./T)
(®)

where II(w) is a frequency-dependent permutation matrix and
D(w) an arbitrary diagonal scaling matrix. Therefore, it is nec-
essary to correct the amplitudes and solve the permutation be-
fore transforming the signals back to the time domain.

If the scaling in the different bins is not corrected then the
restored signals are only a filtered version of the sources. As
these filters are quite arbitrary, usually this means added rever-
beration and thus reduced intelligibility of the speech [24]. In
[9], Ikeda and Murata proposed a method for minimizing the
scaling ambiguity. The main notion is to retrieve the signals the
way they have been recorded by the sensors. This has been ac-
complished by applying postfilters on the single separated sig-
nals which were the inverses of the unmixing filters. In [25], the
same technique was used, and it was demonstrated that this ap-
proach minimizes E{|y(t) — x(t)|?}. Their so-called Minimal
Distortion Principle uses the following unmixing matrix:

W'(w) = diag(W ™' (w)) - W(w) ©)

with diag( - ) returning the argument with all off-diagonal ele-
ments set to zero.

The correction of the permutation ambiguity is even more im-
portant. If every bin is perfectly separated, but different permu-
tations occur at different frequencies, the sources will still not
be separated by the unmixing system. Some approaches to over-
come this obstacle have been proposed, but their performance is
often unsatisfactory, and it remains a challenging task to solve
the permutation ambiguity. The methods can be divided into two
large groups. On one side there are algorithms exploiting the sta-
tistics of the signals and on the other side algorithms using the
properties of the unmixing system. In the following, we give a
brief overview of existing techniques.

D. Methods for Resolving the Permutation Ambiguity

One method to resolve the permutation ambiguity is to de-
mand continuity of the frequency responses of the unmixing fil-
ters [26]. Unfortunately, in real-world scenarios, the approach
often fails when the signals are not completely separable in a
certain bin and the corresponding unmixing matrix thus differs
significantly from its neighbors.

The algorithm presented in [27] transforms the smoothness of
the unmixing filters into the smoothness of the time-frequency
representations, which the authors call profiles. Utilizing the
smoothness of the unmixing filters, the permutation can be re-
solved up to some frequency jumps, which means that there are
blocks of correctly sorted bins. However, if there are several
jumps in close proximity, it is not possible to uncover them, and
especially single or small blocks of permuted bins cannot be de-
tected.

Another successful idea of utilizing the information of the
unmixing system is to interpret the unmixing system as a beam-
former that forms spatial zeros to the different sources [12]. By
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estimating the directions of arrival, the frequency components
that stem from the same spatial direction are aligned to form an
output signal. This algorithm has some drawbacks because not
all frequencies can be sorted in general. At high frequencies,
spatial aliasing occurs and not all frequencies can be aligned
correctly. A solution to this problem was proposed in [28], but
it is still limited to a maximum of three sources and it works
only in low-reverberant rooms. At low frequencies, where the
phase differences at the microphones are small, the direction of
arrival cannot always be estimated exactly. Moreover, if there
are more than two sources and two sensors the estimation of
direction can be very difficult. Solutions involve, for example,
pairwise analyses [15].

The methods in [9], [10] show attempts to solve the per-
mutation problem by aligning the time structure of the sepa-
rated signals. The central notion is that the envelopes of all
bins belonging to the same source are highly correlated. With
V(w,7) = |Y(w,7)| the correlation between two bins k&, is
defined as

S0 Vy(wr, T)Vy(wi, )

VST Vi) S5 V2w )
(10)

pqp(w]m wl) =

where p, ¢ are the indices of the separated signals, V, (wg, T) is
the gth element of V j(wy, 7), and 7 is the number of frames.
To decide whether two bins are permuted or not the value of

p— Pop(@Wh: 1) + Py (Wi @)
Ppq(Whs i) + Pgp(Wi, wi)

(11)

can be used. If » > 1, the bins are sorted correctly. Otherwise,
a permutation has occurred. With more than two sources, the
value of r has to be estimated for all pairs, which means that
(N(N —1)/2) calculations have to be performed, resulting in
a significant computational cost. For speech signals, it is com-
monly not possible to sort all bins with respect to r for all p
and g, because the key assumptions of this method are usually
not satisfied for all frequencies. This is demonstrated in Fig. 1.
The two neighboring bins 100 and 101 have peaks at almost
the same position while bin 300 significantly differs. In such
cases the value of r is often smaller than one and thus leads to
wrong permutation. Another problem is the not always perfect
separation in the frequency domain. If the bins are not well sepa-
rated then the envelopes of the signals do not differ enough. One
idea to resolve this problem is the dyadic sorting algorithm [10],
which starts with pairwise correlation of two neighboring bins
and then takes pairs of grouped bins and groups them again, in
the hope that a few falsely aligned bins within larger groups will
not preponderate. However, if many false permutations occur in
close proximity at an early stage, the entire separation process
can fail.

III. PROPOSED METHOD

In this paper, we propose to use the smoothness of the param-
eters « and 3 of the GGD for solving the permutation problem.
The statistics of the magnitude of every bin |Y (w)| are approx-
imated by the generalized Gaussian distribution as in [29]
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Py () (Y(w)) = %e—ww/w))w_
(12)

For obtaining the parameters « and 3 from samples, we used
the method of moments because of its low computational com-
plexity. The maximum-likelihood estimator was studied as well,
but not differences could be observed with regard to the final
separation performance.

The author of [29] studied the properties of 3 depending on
the frequency and window length. He showed that, on average,
(3 stays constant over frequency and increases with the window
length. He also showed that, although £ is constant on average,
its deviation is quite high. This results from the fact that, for a
given signal, 3 usually varies significantly over the frequency.
In Fig. 2, this situation is illustrated. One can also observe that,
with higher window length, 3 gets larger and varies more.

For a typical BSS scenario, in which the unmixing filters are
several thousand taps long, the values of « and § vary in a large
range, but in neighboring bins the differences are usually small.
Even more important is the fact that in most bins the values are
distinct enough for creating a criterion for determining correct
permutations. In Fig. 3, a typical situation for the 3 parameter is
shown. For the bins around 3920, no differentiation is possible
as the values are almost identical. However, in the range 3800 to
3840 the values are clearly different enough for a correct iden-
tification of the permutations. For speech signals, this situation
is quite common, so a large portion of bins can be assigned to
clusters. This way the permutation problem can be reduced from
several thousand single bins to about a hundred clusters. These
clusters still have to be depermuted using another method, for
example using the correlation approach.

The work in this paper is an extension of our previous con-
ference contribution [17] from one to more dimensions. For the
method in [17] it was found that many bins could be sorted
correctly, but that there were still quite a few frequency ranges
where the depermutation had failed. The reason for this is the

' | L L L
3860 3880 3900 3920 3940

Bin Number

L ! L L
3780 3800 3820 3840

Fig. 3. Beta values of two signals.

fact that the correlation method failed for the lower frequencies
where less bins could been correctly clustered. The larger gaps
between the clusters hindered the effectiveness of the correla-
tion method.

In the present paper, we base the clustering on both param-
eters « and 3 of the GGD. This enables us to find the correct
permutations when at least one of the two parameters shows dis-
tinct values for the separated components. Thus, crossings like
the ones of the [ value at several positions in Fig. 3 do not pose
a problem if the o parameters do not cross at the same bins. Be-
cause « utilizes other statistical properties of the signals than 3,
there is, in general, a good chance that at least one of the two
parameters allows proper clustering. As a consequence, in com-
parison to the original method, more bins can be assigned to less
clusters. This is a much better starting point for the correlation
approach.

The proposed method consists of five parts: 1) estimation
of the boundaries of the clusters using [, 2) estimation of the
boundaries of the clusters using «, 3) joining both cluster types,
4) calculation of the permutation between the clusters, and 5)
aligning the remaining bins.

A. Calculation of the Cluster Boundaries Using Parameter 3

The starting point for the clustering procedure is the estima-
tion of B(w) for all bins. For the reason of simplicity, we first
describe the algorithm for N = 2 sources. An extension to mul-
tiple signals will be given later. When using the algorithm from
Section II, then the values are already given. It is also possible
to use any other BSS algorithm, as the values for S(w) can be
estimated after separation.

The second step is to make a simple grouping. The bins are
compared pairwise and the ones with higher value of 3(w) are
assigned to one and the ones with lower values to the other
source, as shown in Fig. 4(b). The corresponding high and low
B(w) values are given by

ﬂH(w) = Inax[ﬂ(wv 1)7 ﬂ(wv 2)]
Br(w) = min[B(w,1), Bw, 2)]

13)
(14)

The third step is to determine the actual clusters. The idea
for a simple and fast method is the following: Take an existing
cluster and find out if the neighboring bin can be added to it.
The decision is based on the assumption of the values of 3 being
distinct and smooth.

The actual implementation is as follows.

1) Start at bin/ = 1.
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Fig.4. Clustering procedure using 3. (a) The estimated values of 3. (b) Sorting.
(c) Detected clusters.

2) Test if the next bin [ 4+ 1 can be added (appropriate criteria
will be discussed below).

3) If yes, then add this bin to the cluster, increase [ and go to
Step 2.

4) If not, then the end of the cluster has been found. If the
number of the bins in the cluster is greater than a threshold,
add this cluster to the database. Increase [ by one, mark [
as the beginning of a new cluster, and go to Step 2.

The test of whether the next bin can be added is based on the
assumption of small differences in neighboring bins and large
differences between the signals. With 5 > 0 a typical clustering
test for two neighboring bins has the following form: when

Bu(wi) > k1 - Br(wr)
Br(wit1) > k1 - Br(wit1)

15)
(16)

then these two bins can be clustered. If the cluster already con-

tains more bins a more sophisticated set of rules can be used. In
Appendix A, we present such a set.

B. Calculation of the Cluster Boundaries Using Parameter o

The basic idea of clustering can also be used for building the
clusters using .. However, the statistics of a(w) are different
and the approach has to be modified. As «(w) can be compared
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Fig. 5. Cluster joining. Overlapping parts of both types are used for merging.
The results are fewer and larger clusters.

to the energy, the values at higher frequencies become very low
and are not distinguishable. By taking the logarithm of «, a suf-
ficient discrimination can be achieved

a7
(18)

ap(w) = max[log(a(w, 1)),log(a(w, 2))]
ar(w) = minflog(a(w,1)),log(a(w, 2))].

The variances of sequencing ag(w) and ar(w) do not depend
on the absolute value. The differences are more important

a(w) = |ap(w) — ar(w)]. (19)

A typical clustering test has then the following form:
Glwr) > K (20)
&(wl+1) > k‘ll 21

An extended set of testing rules is given in Appendix B.

C. Extension to Multiple Sources

When there are more than two sources the algorithm can be
easily extended. For this the algorithm is applied multiple times.
At first the two largest values of [ or respectively « are pro-
cessed. Then the value is removed and the procedure is applied
again until all sources have been processed. For an increased
performance a analogous procedure can be applied to the bot-
tommost values.

D. Calculation of Cluster Correlations

When both sets of clusters have been calculated based on the
« and [ parameters, a simple merge is done as follows. If clus-
ters formed by the « and § methods overlap, these clusters can
be joined on the basis of the overlapping parts. Fig. 5 shows an
example of such a merging process. The resulting clusters are
bigger and usually occupy most of the bins, so the gaps between
them are small. Therefore, an assumption of highly correlated
envelopes of bins of neighboring clusters can be made.

For aligning the clusters we follow the idea of dyadic sorting
[10]. This algorithm shows the best performance when there are
already ranges of correctly de-permuted bins, which is exactly
the case when doing the o clustering. So we only need to cal-
culate the value of r according to (11) for all bins of two neigh-
boring clusters, and the highest value of 7 gives the correct per-
mutation. If the clusters are very large, this leads to a comparison
of distinct bins within the clusters for which the assumption of
highly correlated envelopes may not be true. So, for a better per-
formance, the comparison can be restricted to smaller parts of
the clusters in the vicinity of the corresponding cluster bound-
aries.
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The final step is to calculate the permutation of the remaining
bins. By using the clustered bins as a reference frame the per-
mutation is calculated again using (11).

E. Analysis and Synthesis Filterbank

For the transformation from the time to the time-frequency
domain, the blockwise STFT can be used [30]. By using an ap-
propriate window, like the Hann or Hamming window, perfect
reconstruction can be achieved, provided that sufficient over-
sampling is performed. An oversampled version is also advis-
able for better performance of the ICA algorithm in every bin.
This means, a window shift of (K /d) is performed with d being
a power of 2,d > 2, and K being the window length.

The proposed algorithm for solving the permutation problem
models every bin using the generalized Gaussian distribution
and utilizes the small variance of the parameters in neighboring
bins. However, there are some cases in which this variance is too
big to correctly identify the permutation. There exists an easy
but very powerful extension to the analysis filterbank which en-
ables us to overcome this handicap. The idea is to use additional
bins, so the differences of the parameters become smaller. This
can be achieved by using an FFT-length that is longer than the
Hann or Hamming window length (i. e., using zero padding).
A feasible value for the frequency oversampling is a factor of 2
or even 4. Higher values than 4 usually do not yield any further
improvements. This approach leads to more bins to be separated
and de-permuted which seems to make the problem more dif-
ficult. However, the properties of the subband signals actually
make the clustering procedure much more reliable.

When just increasing the window length the number of inde-
pendent bins grows and therefore the permutation problem gets
worse. By increasing only the FFT-length, the number of bins
grows also, but as they have overlapping spectra they are not in-
dependent. As the neighboring bins share parts of their signals
the values of the GGD-parameters cannot vary much. Therefore
the clustering procedure can use much stricter constraints and
calculate the cluster more precisely.

The biggest problem that comes along with the extended FFT
length is the extended length of the unmixing filter impulse re-
sponses. When the number of separated bins is doubled, the
length of the unmixing filter’s impulse responses gets doubled
too. The situation gets even worse, as the independent multipli-
cation in every bin results in circular convolution instead of the
desired linear convolution. Such long filters then may result in
clearly audible reverberation. As a remedy, this issue can be re-
solved using a two-stage approach. The reduction of the filter
length can be performed by throwing away the unessential bins.
For example, using an FFT length that is four times the window
length, it is sufficient to use just every fourth bin to reconstruct
the signal correctly. This means the additional bins, which are
used for identifying the correct permutations, can be skipped
for the synthesis of the time signal. The still remaining problem
of circular convolution can be resolved using the method pro-
posed in [31]. There, the authors proposed a technique for spec-
tral smoothing which is able to reduce these artifacts.

TABLE 1
COMPARISON OF CLUSTER SIZES FOR THE ARTIFICIAL DATA

a-Cluster | B-Cluster | Result Cluster

Number 114 98 61
Clustered bins 3121 3338 3618
Avg. Cluster Size 27.38 34.06 59.31

IV. SIMULATIONS

A. Artificial Data

The first tests of the algorithm were made on perfectly
separated signals. For this, two test signals were transformed
into the time-frequency domain. No ICA algorithm was used in
this experiment, but an arbitrary permutation in every bin was
performed. As the permutation was known, the new algorithm
could be tested using this ground truth.

For different setups, the algorithm was able to de-permute
all bins correctly. In the following, one exemplary setup is dis-
cussed closely. The test signals were obtained from [32]. This
data set consists of eight seconds long speech recordings sam-
pled at 8 kHz. The chosen parameters were a Hanning window
of length 2048, a window shift of 256, and an FFT-length of
8192. As the signals are real valued, 4097 bins have to be sep-
arated and de-permuted. Using this setup, one bin represents a
frequency range of approximately 1 Hz and has 228 data points.

In Table I, a summary of the clustering stage is shown. The
algorithm from [17] using just the exponent (3 is able to cluster
3338 bins into 98 clusters. Using just the o parameter the al-
gorithm performs slightly worse. It clusters less bins, and the
average cluster size is also smaller.

When combing the GGD parameters « and (3 as proposed in
Section III, the real power of the algorithm can be recognized.
Both methods are able to cluster different bins and therefore the
number of total clustered bins rises. The even more important
fact is that the clusters of both sets are partially overlapping, so
that they can be joined together. The result is an almost doubled
average cluster size.

In conclusion, although the clustering procedure using the pa-
rameter « alone does not perform as well as the one based on (3,
the benefits of using a combination of both clustering methods
can be clearly seen. The next stage of calculating permutations
between the clusters can be done with much more certainty as
the clusters are on average double the size. Furthermore, as the
number of clusters is reduced, the number of possible wrong
block permutation is reduced.

In this setup, the subsequent stage of calculation of block cor-
relations was performed correctly in all cases. Using the de-per-
muted clusters as a reference, the remaining single bins could
also be correctly assigned.

B. Real-World Data

For the tests with real-world signals, again the data from [32]
was used. The recordings were separated in the frequency bins
using 400 iterations of the gradient-based update rule (1). Other
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TABLE II
COMPARISON OF CLUSTER SIZES FOR THE REAL-WORLD DATA

a-Cluster | B-Cluster | Result Cluster
Number 114 107 64

Clustered bins 3079 3306 3519
Avg. Cluster Size 27.00 30.90 54.98
TABLE III
COMPARISON OF SEPARATION PERFORMANCE

Left Channel | Right Channel | Overall
af Algorithm 18.4 18.4 18.4
Non blind 18.8 18.1 18.4

parameters were the same as for the synthetic data. After sep-
aration the new clustering procedure was applied, and the time
signals were restored.

With real-world signals, the separation in the single bins is
not always perfect and therefore a reduced performance of the
clustering algorithm can be expected. Table II shows the re-
sulting cluster sizes for the real-world data. As the comparison
of Tables I and II reveals, under real-world conditions, either the
number of clusters is increased or the number of clustered bins
is reduced.

The separation performance can be computed if the single
contributions of the signals to the microphones are known. For
this the signal-to-interference ratio

E [(Z;\;Lj#i gij(n) * Sj(n)) }

SIR,, = 10log;, 22)

with g;;(n) = w;(n) * hj(n) can be used. Using the described
setup, an overall separation of 18.4 dB has been achieved. See
Table III for details.

As the original signals are available in this experiment, the
de-permutation can alternatively be done nonblindly by com-
paring the separated bins with the original sources. Such de-per-
mutation can be seen as an upper bound for the achievable sep-
aration performance. As shown in Table III, the separation in
the different channels varies minimally but this has no influence
on the overall performance. The comparison with the nonblind
de-permutation approach clearly shows that the new algorithm
performs very well as it is able to achieve the same overall sepa-
ration ratio. Further improvements can only be made in the sep-
aration stage.

The bins that were assigned differently by the nonblind and
the a3 algorithm are shown in Fig. 6. Affected are few bins
below 100 Hz and one bin at 348 Hz. In Fig. 7, the separation
ratio in every bin is shown. When looking closely at the data,
it becomes clear that the single bin is a case where the separa-
tion failed and therefore both permutations are equally bad. The
permutation of this bin has no influence on the overall perfor-
mance. Furthermore this special bin has not been assigned to a
cluster and the calculation in the last stage failed.

The bins below 100 Hz are also partially wrongly permuted.
As the signals are speech signals, this range has just little energy
and is not relevant for speech intelligibility. The wrong permu-
tation is just measurable in terms of separation performance in
the single channels. The overall performance stays unaffected.

The proposed algorithm is able to de-permute all relevant
bins. In the frequency ranges where the separation in the single
bins is high enough the improved clustering procedure is able to
cluster wide ranges of bins. These clusters are big enough for the
correlation approach to be successful. In the lower frequencies
where some bins are poorly separated, the clustering is still per-
forming well. The aligning of the remaining single bins suffers
the known issues. However, as these bins are poorly separated,
the false permutations do not harm the overall performance.
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TABLE IV
COMPARISON OF SEPARATION PERFORMANCE FOR MULTIPLE SOURCES
2 channels | 3 channels | 4 channels

[ Algorithm 13.1 5.5 1.9

af Algorithm 18.4 12.3 8.3
Method from [9] 3.1 1.4 0
DOA - Algorithm 17.3 12.4 9.2
Non blind 18.4 13.6 9.9

Using the dataset from [32] it was possible to test the new
algorithm also on multiple sources. In Table IV, the results are
shown. One can clearly see the improvements over the method
in [17] obtained through the use of the additional parameter.
While the algorithm using [ is able to separate two sources rea-
sonably well, it fails for multiple sources. The new algorithm
performs better in all cases and is able to separate even multiple
sources. The separation performance is quite well and is compa-
rable to other state of the art de-permutation algorithms like the
one in [12]. The method from [9], which only looks at adjacent
bins, could hardly find the correct permutations.

While the method in [12] needs the a priori information of the
sensor array setup, our method is completely blind and does not
rely on any prior knowledge. Since the proposed algorithm and
the one from [12] use entirely different information for de-per-
mutation, they may even be combined in order to further im-
prove the performance.

V. SUMMARY

In this paper, we presented a new way to solve the permu-
tation problem in convolutive blind source separation. In our
method, every bin is modeled using the generalized Gaussian
distribution. The small variance of the parameters between the
bins are used to calculate the correct permutations. As the dif-
ferences are not high enough for all bins, a clustering procedure
for large portions of the data has been proposed. This presorted
data is then de-permuted using other known algorithms. The
performance of the algorithm has been tested on synthetic and
real-world data. The comparison with a non-blind de-permuta-
tion shows a very good performance. The synthetic data was
perfectly de-permutated, and for the real-world data, all signif-
icant parts have been de-permuted. The statistical information
exploited in our method is complementary to the directivity in-
formation used in other techniques, and future works will be
directed toward combining both approaches.

APPENDIX A
RULE SET FOR CLUSTERING USING (3

The sequencing bin can be added if one of the conditions (23),
(24), (29), or (30) is satisfied

B (wi) > k1 - Br(wr)

and  Bg(wig1) > k1 - Br(witr) (23)
or
B (wi) > ko - Br(wr)
and ,[3H(w1+1) > ko '/BL(WI+1)

TABLE V
STABILITY ANALYSIS FOR CLUSTERING PARAMETERS USING 3. C STANDS
FOR CORRECT CLUSTERING, WHILE F MARKS CASES WHERE SOME
BINS HAVE BIN FALSELY CLUSTERED

ki: 1.40 1.30 1.25 1.20
Clustered Bins (C/F): | 3292 C | 3307 C | 3334 C | 3364 F
ka: 1.15 1.10 1.07 1.05
Clustered Bins (C/F): | 3203 C | 3307 C | 3398 C | 3455 F
ka: 1.25 1.20 1.18 1.15
Clustered Bins (C/F): | 3287 C | 3307 C | 3326 C | 3228 F
ka: 0.050 0.045 0.040 0.035
Clustered Bins (C/F): | 3338 F | 3323 C | 3307 C | 3278 C
ks: 1.07 1.06 1.04 1.03
Clustered Bins (C/F): | 3292 C | 3307 C | 3335C | 3363 F

and By (wi) < Bu(wit1)
Br(wi) > Br(wiy)
with some k1 > ko > 1.

When a cluster already contains several bins, a test for flatness
can be performed. With

and 24)

Dy = Bu(w) — Bu(wi—1) (25)
Dy = Br(wip1) — Br(wi) (26)
Dy = Br(w) — Br(wi-1) (27)
D} = Br(wiy1) — Br(wi) (28)
the test is one of the following:
min(Bg (wi-1), Br (i), Br(wit1))
< kzmax(Br(wi—1), Br(wi), Br(wir1))  (29)
or
|D} — Dy| < ky
and  |D} — Dp| < ky
and = Bu(wit1) > ks - Br(wiy1) (30)

with ks > 1, ks > 1,and ks > 0.

Table V shows the number of clustered frequency bins and the
correctness of all cluster assignments for different choices for
k1 — k5, using the same signals as in Section IV. Essentially, the
larger k1, ko, k3, and k5 are, the safer the clustering is. However,
with increasing parameters the cluster size decreases. Regarding
k4, the cluster assignments become safer for smaller values. The
following parameters have been found to be a good compromise
of cluster size and correctness of the clustering and were used
in the experiments: k; = 1.3, ko = 1.1, ks = 1.2, k4 = 0.05,
and k5 = 1.06.

APPENDIX B
RULE SET FOR CLUSTERING USING «

For clustering according to the parameter «, the following
rules can be used. One of the conditions (31), (32), (36), and
(37) has to be satisfied

d(wl) > k‘ll

and  G(wig1) > K, 31)
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TABLE VI
STABILITY ANALYSIS FOR CLUSTERING PARAMETERS USING «. C
STANDS FOR CORRECT CLUSTERING, WHILE F MARKS CASES WHERE
SOME BINS HAVE BIN FALSELY CLUSTERED

E: 0.5 0.4 0.3 0.2
Clustered Bins (C/F): | 3109 C | 3179 C | 3179 C | 3296 F
K4 0.30 0.25 0.20 0.15
Clustered Bins (C/F): | 3174 C | 3179 C | 3208 C | 3248 F
kg 0.25 0.2 0.15 0.09
Clustered Bins (C/F) | 3131 C | 3179 C | 3242 C | 3385 F
Ej: 0.03 0.05 0.09 0.12
Clustered Bins (C/F) | 3159 C | 3179 C | 3222 C | 3255 F

or
&(wl) < &(wl+1)
and  a(w) > K (32)
with k{1 > k5 > 0.
Using
D! = a(w;) — é(wigr) (33)
122 = &(wl_l) — 5[((4)1) (34)
D? = a(wi—2) — &(wi_1) (35)

bigger clusters can be tested

Hlin(&(w1_1)7 d(wl)7 &(wl-l-l)) > kf?, (36)
or
max(|D'|,|D?|,|D?|) < K, (37)

with k5 > 0 and &} > 0.

Results for different parameter choices for k%, kb, k%, k}
are given in Table VI. For k, k%, and £}, the clustering be-
comes safer for increasing values. For k) the opposite is the
case. The following values were selected for the experiments,
as they give a good compromise of cluster size and correctness:

1 =04, k), =0.25, k5 = 0.2, and k) = 0.05.
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