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I. Introduction 

Several publications on magnetic particle imaging (MPI) 

are based on the Langevin theory of paramagnetism to 

describe the imaging process [1-4]. However, although 

some reconstruction methods require the Fourier 

transform of the Langevin function and its derivative, in 

practice, due to the lack of a closed-form expression, they 

are approximated either numerically or via the Lorentzian 

function, which works quite well in practice. 

Nevertheless,  we here give a closed-form solution for the 

Fourier transform of the Langevin function and derive the 

temporal and spatial Fourier transformed versions of the 

system function according to the Langevin model. 

II. Fourier transform of the Langevin 

function 
The Langevin function has the following uniformly 

convergent series expansion: 

 ℒ��� = coth���− �
� = ∑ ��

�����������   

																		= �
i ∑ � �

���i� − �
���i������ .		 (1) 

First, we derive the Fourier transform of ℒ���� ∈ ���ℝ�. 
We obtain 

  ℒ� �!�� = ℱ#ℒ����$ = ∑ �ℱ %�i � �
���i���& − ℱ %�i � �

���i���&����� 	
																	= ' ��|)*|+,|-*|�� ,	if	|!�| > 0

2,									if	!� = 0,    (2) 

where !� = 234� denotes the spatial frequency along the  �-dimension. With an approach similar to (2), we can 

calculate the Fourier transform of 
ℒ���
� , which is not in ���ℝ�, but in ���ℝ�. This yields 

 ℒ�5�!�� = ℱ %ℒ���� & = −2	ln81 − :��|)*|; ∈ ���ℝ�. (3) 

It should be explicitly noted that the Fourier transform of ℒ��� only exists in the sense of the distribution theory, 

because ℒ��� is neither in ���ℝ� nor in ���ℝ�. The 

distributional Fourier transform of ℒ��� is given by 

 ℒ��!�� = ℱ#ℒ���$ = 23i	sgn�!�� 1
1−:3|!�| (4) 

for !� ≠ 0.		The Fourier transform of the Langevin 

function has a singularity at	!� = 0. However, it can be 

easily verified that ℒ��� can be expressed as 

 ℒ��� = �
� 8sgn��� ∗ ℒ����;,  (5) 

where ∗ denotes the convolution operation. The function sgn��� can be seen as a temperate distribution from @′ in 

the spatial domain which also has a distributional 

expression in the Fourier domain given by �i-*	 [5]. Both 

distributions are to be understood in the sense that the 

Fourier transform and its inverse have to be evaluated 

with help of the Cauchy principal value (p.v.).  It can be 

proofed that this makes the last term in (4) itself a 

distribution, which can be evaluated with the p.v..  

III. 1D MPI Fourier representation of the 

Langevin-Model 
One-dimensional MPI can be described by the simplified 

model [1] 

 B�C� =  
 D 	 EF G���HIℒ8JK��FFP�C� − ��;N���� O	

																			=  
 DP�C� = EF G���	Q��, C�N���� O   (6) 

with J = RST�UV  and 	HI = WIXY, where B�C� denotes the 

measured voltage signal, G��� is the spatial SPIOs 

distribution, X denotes the coil sensitivity, WI	the vacuum 

permeability, Z[ the Boltzmann’s constant, \ the 

temperature of the SPIOs, and Y the magnetic moment of 

one nanoparticle. All parameters in (6) that are 

independent of G��� are included in	Q��, C�, the so-called 

system function. The spatial position of the FFP at time 

point C is given by �FFP�C� = −K��]^�C�, where ]^�C� 
denotes the magnetic drive field and K denotes the applied 

gradient strength of the static gradient field. Commonly, 

one chooses ]^�C� = −_ cos�234C�, which is a periodic 

function in \̂ = �
`. For the sake of clarity, we omit the 

constant factor HI in the following. The Fourier series 

coefficients of B�C� are given by 

 Ba� = �
Vb F  

 DP�C�:�i)cDNCVb/��Vb/� = i	)cVb F P�C�:�i)cDNCVb/��Vb/� , (7) 
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where	!� = 23Z4. A convolution in the spatial domain is 

a multiplication in the frequency domain: 

 ℎ��� = F G�B�ℒ8JK�� − B�;NB��� 	
																						ℎf�!�� = Ĝ�!�� �|hi| 	ℒ� �)*hi�. (8) 

We are now interested in the Fourier series expansion of j�C� = ℎ8�FFP�C�;. In a first step, ℎ8�FFP�C�; is 

represented by the inverse Fourier transform [6] along x: 

 ℎ8�FFP�C�; = �
�� F ℎf�!�����	 :i)*�FFP�D�N!� . (9) 

Then, we derive the Fourier series coefficients of j�C�: 
  ja� = �

Vb F ℎ8�FFP�C�;:�i)cDNClb��lb� 																																													
													= �

�� F ℎ m�FFP � n
��`�o :�i�n��� Np (10) 

 						= 1
�23�2 F qF ℎf�!��∞

−∞	 :i!��FFP� p
234�N!�s :−iZpNp3

−3 .									
												= �

�� F ℎf�!�� q ��� F :�i��)*�FFP� t�,u���n�	���	 Np	s��� N!�.  

We now consider the function 

 v�!� , Z� = �
�� F :�i��)*�FFP� t�,u���n�	���	 Np		

																																					= �
�� F :�i��-*wx cos�n���n�	Np���	 . (11) 

The integration problem can be solved with help of the 

Jacobi-Anger expansion: 

 :i)cos�n� = ∑ iyzy�!�:iyp∞y=−∞ , (12) 

where z5�!� denotes the n-th Bessel function of first kind.  

With (12) it follows 

 v�!� , Z� = i�z� �)*{i �. (13) 

Finally, we obtain for (10) 

  ja� = ic
��|hi| F Ga�!��ℒa � !�hi���� z� �)*{i �N!� 	. (14) 

It should be noted that the product of ℒ��!�� and z��|!�� 
is always in ���ℝ�	for Z >0 and | ≠ 0. Next, we derive 

the Fourier representation of the MPI system equation (7) 

as 

  Ba� = ic}~	)c	��|hi| HI F Ga�!��ℒa � !�hi���� z� �)*{i � N!� 																				
														= �

�� F Q̂��−!��Ĝ�!��N!� = F Q����G���N�,������  (15) 

where 	Q̂��!�� with Z ∈ ℕ and !� ∈ ℝ is the 2D 

frequency-domain representation of the spatio-temporal 

system function. Another term needed is the inverse 

Fourier transform of z��!��	along !� . The result can be 

derived as [7] 

 ����� = ℱ��EzZ�!��O = � icVc����√���� 		for	|�| < 1
	0															else,														 (16) 

where \���� denotes the Z-th Chebyshev polynomial of 

the first kind. Finally, we want to show that the Fourier 

representation 

 Q̂��!�� = ��i�c}~	)c�S	|hi| ℒa �!�hi� z� �)*{i �	 (17) 

is consistent with the closed-form solution for Q����. Let 

us remove the spatial Fourier transform to get 

Q���� = ��i�c}~	)c	�Si{ F ℒ8JK�� − B�;�� �i�{ � 	NB
wx�wx

 = −i24HIℒ�JK�� ∗ 	 i	�	Vc�x*w �{����x*w ��
																																																										 

= i24HIℒ�JK�� ∗ �
�� m���� �i�{ �	�1 − �i�{ ��o	   (18) 

= i24HIJKℒ��JK�� ∗ ���� �i�{ �	�1 − �i�{ ��, 

where �5��� denotes the y-th Chebyshev polynomial of 

the second kind, which is equivalent to the closed-form 

solution from [1].  

IV. Conclusions 

The description developed in this contribution can be 

extended to two- and three-dimensional MPI in a similar 

way with some minor assumptions. We hope this will 

help us to prove some systemically made observations in 

MPI, like the nonlinear frequency mixing [8], which 

connects the spatial frequency in two and more 

dimensions with the temporal frequency. However, the 

proof of the nonlinear frequency mixing is still pending.  
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