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ABSTRACT

This paper describes the implementation of biorthogo-
nal cosine-modulated filter banks on fixed-point arith-
metic digital signal processors. The proposed imple-
mentation has the property that the overall filter bank
keeps the perfect reconstruction property despite coef-
ficient quantization, overflow, and rounding of interme-
diate results. The realization of the prototype filter is
based on a factorization into zero-delay and maximum-
delay matrices. We demonstrate how the frequency se-
lectivity of the filter bank and the coding gain changes
with the available wordlength of the fixed-point imple-
mentation and the dynamic range of the input signal.
For speech signals it turns out that overflow and round-
ing errors hardly affect the frequency selectivity of the
filters if the input signal uses only 75% of the available
dynamic range.

1 INTRODUCTION

Biorthogonal cosine-modulated filter banks with perfect
reconstruction (PR) have been studied in [1, 2, 3]. Other
than paraunitary filter banks they allow to design the
system delay independently of the filter length, thus, re-
sulting in a better stopband attenuation and a smaller
transition bandwidth for a given system delay than pa-
raunitary filter banks.

However, when implementing such a filter bank on a
processor with finite-precision arithmetic, the prototype
and the modulating sequences need to be quantized,
which results in a loss of the PR property. Rounding
intermediate results to the available wordlength causes
further reconstruction errors.

In this paper, we concentrate on the implementation
of the lowpass prototype filter and derive a formulation
that allows PR even with finite-precision arithmetic.
Note that the proposed approach is different from de-
signs which explicitly use integer prototypes such as the
ones in [4, 5, 6, 7, 8] since there the number of bits
needed for the implementation increases through the fil-
ter bank wherease in our implementation the number of
bits needed remains constant. For the realization of the
modulation matrix we refer to [6, 7, 9, 10].

The paper is organized as follows: First, we will re-
call basic properties of cosine-modulated filter banks
and show how they can be realized using zero-delay and
maximum-delay matrice. We then show that coefficient
quantization and rounding operations after each multi-
plication and addition does not affect the PR property.
Finally, we demonstrate how these nonlinear operations
affect the amplitude spectrum of the subband signals
and the coding gain.

2 COSINE-MODULATED FILTER BANKS

In this paper we limit our investigations to critically
sampled M channel cosine-modulated filter banks with
the same FIR prototype p(n) for the analysis and syn-
thesis filters and an overall delay of D = 2sM + 2M − 1
where s is an integer. Note that this is the most
commonly treated case where the least PR constraints
are imposed on the prototype filter. The analysis and
synthesis filters are denoted as hk(n) and fk(n), re-
spectively, and are obtained from the prototype filter
through the following cosine modulation [2]:

hk(n) =

√
2
M

p(n) cos(
π

M
(k + 0.5)(n − D/2) + θk),

(1)

fk(n) =

√
2
M

p(n) cos(
π

M
(k + 0.5)(n − D/2)− θk)

(2)

with θk = (−1)kπ/4. In [11, 12] we derived a computa-
tional efficient realization of the analysis and synthesis
filter bank based on an M×M cosine transform and spe-
cific lifting steps called zero-delay and maximum-delay
matrices for the polyphase filters. The resulting struc-
ture is shown in Figure 1. The transform matrices C′

1

and C′
2 in Figure 1 are defined as:

- for � = 0, . . . , M/2 − 1:

[C′
1]k,� =

√
2
M

cos((k + 0.5)
π

M
(� − D

2
) + θk) (3)

[C′
2]k,� =

√
2
M

cos((k + 0.5)
π

M
(2M − 1 − � − D

2
) − θk)

(4)
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Figure 1: Efficient polyphase realization

- for � = M/2, . . . , M − 1:

[C′
1]k,� =

√
2
M

cos((k + 0.5)
π

M
(� + M − D

2
) + θk (5)

[C′
2]k,� =

√
2
M

cos((k + 0.5)
π

M
(M − 1 − � − D

2
) − θk)

(6)

The polyphase filters are realized using matrices
G�(z) and K�(z), � = 0, . . . , M/2 − 1, each of which
implements four polyphase filters. For a PR filter bank
they can be factorized in the following form:

G�(z) =
j0∏

j=1

D�,j(z)
i0∏

i=1

B�,i(z) ·G�,ini(z), (7)

K�(z) =K�,ini(z)
1∏

i=i0

B−1
�,i (z)

1∏
j=j0

(z−2D−1
�,j (z)) (8)

where j0 = 2s for a fixed value of s and and i0 is cho-
sen such that the desired filter length N is met. The
matrices B�,i(z), D�,j(z), and G�,ini(z) are called zero-
delay, maximum delay, and initialization matrices, re-
spectively, and have the following structures [12] :

B�,i(z) =
[
0 1
1 b�,i z−1

]
, B−1

�,i (z) =
[−b�,i z−1 1

1 0

]
(9)

D�,j(z) =
[
d�,j z−1

z−1 0

]
, z−2 D−1

�,j (z) =
[

0 z−1

z−1 −d�,j

]

(10)

G�,ini(z) = (−1)s

[
1 0

g̃�,0 z−1 z−1

] [
1 g̃�,1

0 1

] [
1 0

g̃�,2 1

]

(11)

K�,ini(z) =
[

1 0
−g̃�,2 1

] [
1 −g̃�,1

0 1

] [
z−1 0

−g̃�,0 z−1 1

]

(12)

Zero-delay matrices increase the length of the
polyphase filters but keep the system delay unchanged
whereas maximum-delay matrices increase both, the fil-
ter length and the system delay.

3 FIXED-POINT IMPLEMENTATION

An implementation of the filter bank on a fixed-point
processor has been simulated in Matlab using Simulink
Fixed Point Blockset which automatically takes care of
rounding, scaling, and overflow. It is possible to assign
different wordlengths to signals and gains. Figures 2
and 3 show the realization of a zero-delay matrix and
its inverse and Figures 4 and 5 show the realization of
an initialization matrix and its inverse.
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Figure 2: Zero-delay matrix using Matlab Simulink
Fixed-Point Blockset. Wordlength: 16 bit for both sig-
nals and coefficient.
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Figure 3: Inverse zero-delay matrix using Matlab
Simulink Fixed-Point Blockset. Wordlength: 16 bit for
both signals and coefficient.

For the fixed point implementation, the entries of
the matrices (9)-(12) must be quantized to a specified
wordlength. Fortunately, each matrix contains only one
coefficient that is subject to quantization. Because the
inverse matrix contains the same coefficient, coefficient
quantization does not alter the PR property of the fil-
ter bank as long as the same quantization scheme (e.g.
floor, ceiling, nearest) is applied in the analysis and syn-
thesis filter banks.

The same holds true when rounding the multiplica-
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Figure 4: Initialization matrix using Matlab Simulink
Fixed-Point Blockset. Wordlength: 16 bit for both sig-
nals and coefficients.
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Figure 5: Inverse initialization matrix using Matlab
Simulink Fixed-Point Blockset. Wordlength: 16 bit for
both signals and coefficients.

tion results, to the original wordlength of the input data
stream since exactly the same rounded products occur
on the analysis and synthesis sides and rounding errors
compensate. Note that the same argumentation has
been followed in [13] for the design of integer-to-integer
wavelet transforms.

During addition, a carry over bit may occur that usu-
ally increases the wordlength of the sum by one bit. To
avoid increased wordlengths, we carry out finite-field ad-
ditions in our implementation. That is, the sum of two
numbers A and B in the range [−1, 1] is computed as

C = ((A + B + 1) mod 2) − 1. (13)

Most importantly, with this type of addition, overflow
does not affect the PR property.

4 DESIGN EXAMPLES

For a filter bank with M = 8 subbands, we implement a
lowdelay prototype filter of length N = 32 that causes
an overall system delay of D = 15. For this setting,
G�(z) according to (7) consists of the initialization ma-
trix and two zero-delay matrices. The prototype coeffi-
cients as well as the initialization and zero-delay matrix
coefficients for the original floating point prototype fil-
ter are given in Table 1. The magnitude responses of
the floating-point analysis filters are shown in Figure 6.

We only consider the influence of the polyphase real-
ization of the prototype and assume that the modulation
matrix is perfect.
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Figure 6: Magnitude responses of the analysis filters.

Table 1: Coefficients of the floating-point prototype
filter and the initialization and zero-delay matrix

coefficients

p0 0.28368881433396 p16 0.23802829296291
p1 0.38739487911472 p17 0.14898493689125
p2 0.49853892787010 p18 0.07230700728739
p3 0.61003862299352 p19 0.01265254491271
p4 0.71482988586654 p20 −0.02745312720718
p5 0.80617651327097 p21 −0.05212221331985
p6 0.88110239746544 p22 −0.05705821166075
p7 0.93883034147570 p23 −0.05213520966147
p8 0.95232579397068 p24 −0.03919070847929
p9 0.92151456192117 p25 −0.01917604182496

p10 0.87044546070271 p26 0.00180987945862
p11 0.79737935441808 p27 0.00636354385339
p12 0.70488882323366 p28 0.01380743400644
p13 0.59828289592636 p29 0.00130464427674
p14 0.48542538977717 p30 −0.00734403541791
p15 0.37339381850171 p31 −0.00858391991101

g̃01 −0.83208008854513 g̃21 −0.47326870567427
g̃02 0.93883034147570 g̃22 0.80617651327097
g̃03 −0.76298256886340 g̃23 −0.62202391644390
b01 0.16464726941260 b21 −0.02503048496292
b02 0.23825835937716 b22 0.08427716336670
g̃11 −0.71272354814690 g̃31 0.09010463437248
g̃12 0.88110239746544 g̃32 0.71482988586654
g̃13 −0.69527119963296 g̃33 −0.54553032087313
b11 0.12871127930841 b31 −0.50294576287202
b12 0.15337504408994 b32 0.02579188515420

Although nonlinear operations such as quantization,
rounding and overflow do not affect the PR property of
the filter bank they can have a significant influence on
the frequency selectivity of the filter bank. In the fol-
lowing we present simiulation results for a speech input
signal with the spectrum shown in Figure 7.
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Figure 7: Amplitude spectrum of the input signal.

4.1 The Effect of Overflow
In a first step we investigate the influence of overflow oc-
curing in the adders of the zero-delay and initialization
matrices in Figures 2 and 4. Note that no overflow oc-
curs during the multiplications since the absolute value
of all coefficients in Table 1 is smaller than one. All
signals and coefficients have a wordlength of 16 bits to
represent numbers in the range [−1 1]. The input se-
quence of length 45578 is scaled such that it covers the
ranges of [−0.5 0.5], [−0.75 0.75], and [−1 1], respec-
tively. The amount of overflow occuring for the different
realizations is given in Table 2.

Table 2: Amount of overflow occuring in the polyphase
realization (input signal is of length 45578).

input range no. of overflows
[−0.5 0.5] none

[−0.75 0.75] 1077
[−1 1] 4761

The magnitude responses of the analysis filters in
dB are estimated using the power spectrum density of
the subband signals by taking the subband power spec-
trum density (PSD) in dB prior to subsampling minusd
the input PSD in dB. All PSD estimates are obtained
by averaging the squared magnitudes of DFT’s of non-
overlapping rectangular signal windows of length 1024.
The results are shown in Figure 8 for dynamic ranges
of the input signal of [−0.5 0.5] and [−0.75 0.75], re-
spectively, as well as for the normalized spectrum of the
lowpass band for all three different input ranges together
with the normalized input spectrum.

It can be seen that the realization is rather sensitive
to the occurrence of overflow. High frequency compo-
nents that pass through the lowpass filter increase with
the range of the input signal and thus the amount of
overflow. For the input range of [−1 1] there are more
high frequency components in PSD of the lowpass band
than in the original input PSD. This is due to the fi-
nite field addition in our realization which creates new
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Figure 8: Influence of overflow on the transfer charac-
teristic of the filter bank and the lowpass spectrum.

frequency components in the spectrum. On the other
hand, a security margin of one bit for the input signal is
sufficient to prevent overflow, see Table 2. Fortunately,
most audio/speech signals satisfy this margin most of
the time.

4.2 Coefficient Quantization
In a next step we investigate the sensitivity of the struc-
ture to coefficient quantization. Realizing the filter
banks with coefficients of a small wordlength has advan-
tages for VLSI implementations where multiplications
are realized using shift and add operations.



The filter coefficients are quantized to 4, 8, and 16
bit wordlength. We can see from Figure 9 that the filter
coefficients are not very sensitive to quantization. The
result for 8 and 16 bit superpose. Only when quantizing
the coefficients to 4 bit wordlength an increase of the
power in the stopband can be observed for 0.1 ≤ ω/2π ≤
0.2.
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Figure 9: Influence of coefficient quantization on the
transfer characteristic of the filter bank and the lowpass
spectrum.

Figure 10 shows the magnitude frequency response of
the lowpass filter if only coefficient quantization and no
rounding of intermediate signals is applied. Comparing
Figures 9 and 10, we can draw the conclusion that the
decrease of the stopband attenuation with respect to
high frequencies is mainly due to the rounding operation
that keeps the wordlength constant. As long as rounding
is performed, coefficients can be implemented using a
small wordlength without significant additional loss of
performance.
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Figure 10: Lowpass magnitude response for different co-
efficient wordlength.

4.3 Coding Gain
The coding gain of the filter bank implementations is
given by [14]

G =
σ2

x(
M−1∏
k=0

σ2
yk
||fk||2

)1/M
(14)

G =

1
M

M−1∑
k=0

σ2
yk

(
M−1∏
k=0

σ2
yk

)1/M

(15)

where σ2
x, denotes the variance of the input signal, σ2

yk

the variance of the k-th subband signal, and ||fk||2 the
norm of the k-th synthesis filter. The resulting coding
gains for the input signal from Figure 7 are stated in
Table 3.

Table 3: Coding gains for different implementations

coeff. wordlength input range coding gain
16 bit [−1 1] 1.97
16 bit [−0.75 0.75] 8.96
16 bit [−0.5 0.5] 9.77
8 bit [−0.5 0.5] 9.75
4 bit [−0.5 0.5] 7.66

5 CONCLUSIONS

In this paper we have described a structure for the
implementation of biorthogonal cosine-modulated filter
banks with fixed-point arithmetic. The approach is
based a factorization of the polyphase components into
zero-delay and maximum delay matrices and keeps the
perfect reconstruction property despite quantization,
rounding and overflow. Design examples demonstrate
the influence of overflow, quantization, and rounding on
the frequency selectivity and the coding gain.
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