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ABSTRACT

Continuously moving microphones produce a high number of spa-
tially dense sound-field samples with low effort in hardware and ac-
quisition time. By interpreting the dynamic procedure as the non-
uniform sampling of spatial basis functions, a system of linear equa-
tions can be set up. Its solution encodes sound-field parameters that
allow for the spatio-temporal reconstruction within the measurement
area at bandwidths where static methods would require impractical
setups. An existing framework considers such basis functions from a
signal processing point of view. It uses sinc-function based interpo-
lation filters which are highly localized around sampled trajectories
and may lead to ill-posed problems unless sparsity constraints are
made, especially for locations that are away from microphone tra-
jectories. In this paper, we present a new physical interpretation of
the dynamic sampling problem. Transferring the problem into fre-
quency domain, we describe samples of a moving microphone in
terms of sampled spherical harmonic functions. The use of these
global basis functions leads to dynamic measurements that inher-
ently encode expanded sound-field information and, thus, allow for
robust reconstruction at off-trajectory positions.

Index Terms— Room impulse responses, moving microphones,
spherical harmonics, wave equation.

1. INTRODUCTION

Sound transmission between two points in reverberant environments
is described by a convolution with the room impulse response (RIR).
The RIR is highly sensitive to spatial shifts due to various sound
paths reflecting from room walls and superposing at the receiver
position. Thus, a massive number of dense measuring positions is
needed for accurately reconstructing the spatio-temporal RIR over
an extended volume at large bandwidths. However, this is valu-
able in many applications related to sound field analysis, auditory
scene synthesis, and channel equalization. Typically, RIRs for static
emitter-receiver pairs are measured by using deterministic excita-
tion signals that allow for inverting their convolution by correlating
the microphone signal with their reverse signal. Signals applicable
for such simple deconvolution are perfect sequences [1], maximum-
length sequences (MLSs) [2], and sine sweeps [3].

Spatio-temporal recovery of high frequencies makes stationary
sampling impractical due to too small spatial intervals required for
aliasing-free reconstruction [4]. This includes high effort in cali-
bration and exact positioning of individual microphones. For ob-
taining qualified sound-field estimates from sub-Nyquist sampling at
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reduced effort, several static approaches exploit sparse signal struc-
tures [5–7] according to the compressed-sensing paradigm [8].

Beyond deterministic excitation, any arbitrary source signal can
be used for encoding the convolution into a system of linear equa-
tions and estimating involved time-invariant RIRs by least-squares
optimization. Such linear measurement equations are also the basis
for dynamic approaches where impulse responses at continuously
changing positions are modeled in terms of time-varying systems,
whose coefficients are tracked by adaptive filtering concepts [9].
This type of methods is commonly used for acoustic echo cancel-
lation [10–13] and for fast acquisition of head-related impulse re-
sponses (HRIRs) [14–17]. In [18], a different, analytical approach
has been introduced. Using a specially designed excitation signal,
the Fourier slice theorem is exploited and the Doppler effect is di-
rectly taken into account, in order to reconstruct RIRs along a linear
or circular trajectory performed by a microphone at constant speed.

More recently, several methods have been proposed that inter-
pret the reconstruction from dynamic sound-field sampling as spa-
tial interpolation task [19–24]. They explicitly use a multidimen-
sional measurement model where a moving microphone simultane-
ously generates uniform samples in time domain and, in general,
non-uniform samples at varying points in the spatial domain. Such
techniques require positional information, based either on a con-
trolled pre-defined trajectory or a tracking of the microphone posi-
tions. The method in [19] uses a spatial Fourier basis for the angular
reconstruction of HRIRs from continuous-azimuth recordings, and
shows more accurate performance than an adaptive-filter based solu-
tion. In [20], perfect-sequence excitation is used for the orthogonal
expansion of impulse responses, in order to describe the dynamic
spatio-temporal sampling by notional static sampling processes of
single expansion coefficients. This method, simplifying the problem
to pure interpolation in space, has been investigated for reconstruct-
ing binaural impulse responses [21] and RIRs along a circle [22].
In [23, 24], a versatile framework has been introduced, where the
deconvolution problem in time domain and the interpolation prob-
lem in space domain are both integrated into one structured system
of linear equations whose solution allows for RIR reconstruction in
three-dimensional space. To achieve this, the sound field is parame-
terized by modeling notional grid points in space and dynamic sam-
ples are understood as the result of bandlimited interpolation on that
grid using sampled sinc-function approximations.

In this paper, we first present a more general formulation of
the dynamic model proposed in [23, 24]. The linear equations are
construed in terms of sampling of weighted spatial basis functions,
where the weights encode the spatio-temporal RIR and are referred
to as sound-field parameters. Then, this generalized model is applied
to a new physically based perspective of the dynamic sampling prob-



lem, leading to a spherical harmonic representation with frequency
parameters describing spherical solutions to the acoustic wave equa-
tion. This representation, similarly known from sound-field repro-
duction techniques [25, 26], is beneficial due to its natural interpre-
tation of sound propagation and is experimentally shown to achieve
robust RIR reconstruction within the measurement volume, also at
positions being far away from the microphone trajectory.

2. GENERAL DYNAMIC SAMPLING MODEL

By assuming a closed-room scenario with constant atmospheric con-
ditions, the transmission of the sound signal s(t) from a fixed source
position to location r ∈ R3 subject to time t ∈ R is modeled with
p(r, t) =

∫∞
−∞ s(t − τ)h(r, τ)dτ, where p(r, t) is the resulting

sound-pressure field and h(r, t) is the spatio-temporal RIR describ-
ing a linear time-invariant (LTI) system, i.e., the particular sound-
pressure field for a Dirac impulse at t = 0.

First, let us consider the temporally sampled version of p(r, t).
For a signal having maximum frequency fmax, the sampling with
fs > 2fmax yields uniform samples at equidistant points tn = n/fs

(n ∈ Z) that allow for aliasing-free reconstruction in time. The mea-
surement process subject to the discrete variable n reads p(r, n) =
s(n) ∗ h(r, n) + η(n), with η(n) being the measurement noise.

Instead of capturing the entire field information over all r at
each sampling point n, let us now assume that the acquired data is
restricted to Q positions rq(n) ∈ R3 changing over time. By defin-
ing Q as the number of microphones moving along the trajectories
rq(n) inside a volume of interest Ω, we obtain a dynamic measure-
ment setup that generates samples at uniform points in time and,
generally, at varying and non-uniform positions in space.

Without loss of generality, we set Q = 1. The sampling process
of a single microphone moving along the trajectory r(n) follows
the spatio-temporal convolution p(r(n), n) = s(n) ∗ h(r(n), n).
This equation holds true for the dynamic case despite of the Doppler
effect since both signals, p(r(n), n) and h(r(n), n), live on the joint
manifold r(n) leading to shared Doppler shifts [23]. Accordingly,
supposing that the amplitude of h(r, t) vanishes into the noise level
for tn > tL−1, the dynamic spatio-temporal measurement of N
samples reads

p(r(n), n) =

L−1∑
m=0

s(n−m)h(r(n),m) + η(n), (1)

where h(r(n),m) covers RIRs, each with L uniform delays m,
along the non-uniform trajectory r(n). By modeling an appropri-
ate parameterization of the continuous-space and discrete-time RIR
within Ω using multidimensional basis functions fp,

h(r, n) ≈
P∑
p=1

apfp(r, n) ∀ r ∈ Ω, (2)

the RIRs along the trajectory r(n) ∈ Ω may be represented by the
spatially sampled basis functions fp with respect to the same param-
eters ap. Thus, the resulting sampling model is

p(r(n), n) =

L−1∑
m=0

s(n−m)

P∑
p=1

apfp(r(n),m) + η(n). (3)

This allows for setting up a system of linear equations describing
the dynamic sampling subject to joint parameters. The knowledge
of s(n) and r(n) enables the calculation of estimates âp that solve

the linear system, e. g. in the least-squares sense with a number of
samples N ≥ P , and may be used for spatial reconstruction inside
Ω according to (2).

3. PHYSICAL PARAMETERIZATION MODEL

The sound pressure p(r, t) in free three-dimensional space follows
the homogeneous acoustic wave equation

∇2
r p(r, t)−

1

c2
∂2

∂t2
p(r, t) = 0, (4)

where ∇2
r denotes the Laplace operator with respect to the coordi-

nates in r, and c is the speed of sound [27, 28]. By defining the
position vector in spherical coordinates r = [r, θ, φ]T , solutions to
the wave equation can be derived by separating the variables accord-
ing to

p(r, t) = R(r) Θ(θ) Φ(φ)T (t), (5)

which leads to four ordinary differential equations with dependence
of the pressure on radius r, polar angle θ ∈ [0, π], azimuth angle
φ ∈ [0, 2π), and time t, respectively [27,29]. By choosing the funda-
mental temporal solution T (t) = ejωt, with the imaginary unit j and
the angular frequency ω = 2πf , temporal progress of monochro-
matic sound-pressure fields follows p(r, t) = p(r)ejωt. Apply-
ing this spatio-temporal separation to (4) leads to the Helmholtz
equation ∇2

r p(r, k) + k2p(r, k) = 0, which constitutes a time-
independent description of the wave equation respecting the angular
wave number k = ω/c.

Solutions to the angular dependencies are conveniently pooled
in the set of orthonormal and complete spherical harmonic functions,
Y uv (θ, φ) = Θ(θ) Φ(φ) with order v ∈ N0 and mode u ∈ Z, defined
as

Y uv (θ, φ) =

√
(2v + 1)

4π

(v − u)!

(v + u)!
Puv (cos θ) ejuφ, (6)

where Puv is the associated Legendre function of the first kind with
Puv (cos θ) = 0 for all |u| > v [27, 29]. The remaining radial term
in the Helmholtz equation leads to the so-called spherical Bessel
differential equation. For spherical volumes being free of sound
sources, the amount of incoming and outgoing waves is equal and,
thus, complete radial solutions are given by R(r) = Avbv(kr),
where Av ∈ C is a constant and bv(kr) is the spherical Bessel func-
tion of the first kind [27]. By combining all particular solutions, the
single-frequency sound pressure in free field reads

p(r, θ, φ) =

∞∑
v=0

v∑
u=−v

Avubv(kr)Y uv (θ, φ), (7)

which may be regarded as the inverse transform of the sound field
using basis functions Y uv (θ, φ). For known pressure p(r0, θ, φ) on a
sphere of radius r0, the forward transform represented byAvu can be
uniquely calculated. Due to the orthonormality of (6), multiplying
both sides of (7) by [Y uv (θ, φ)]∗ determines the coefficients as

Avu =
1

bv(kr0)

∫ 2π

0

∫ π

0

p(r0, θ, φ) [Y uv (θ, φ)]∗ sin θ dθdφ. (8)

Substituting (8) into (7) yields

p(r, θ, φ) =

∞∑
v=0

v∑
u=−v

avu(r0)
bv(kr)

bv(kr0)
Y uv (θ, φ), (9)

where avu(r0) is referred to as the spherical wave (SW) spectrum at
radius r0 [27], which allows for wave-field extrapolation to arbitrary
radii according to avu(r) = avu(r0)bv(kr)/bv(kr0).



4. PROPOSED APPROACH

The spherical volume of interest Ω is free of sound sources and ob-
stacles. As usual, the impact of the microphone on the sound field
is considered negligible. The origin of the spherical coordinate sys-
tem is set to the center of Ω. Feasible positions are restricted by
r ∈ [0, rmax], with rmax being the maximum radius inside Ω. The
acoustical environment is supposed to be reverberant, which is con-
sistent with the free-field model within Ω. This can be shown by ref-
erence to the LTI assumption and geometrical room acoustics [30].

4.1. RIR Parameters in Frequency Domain

The sound field for Dirac delta excitation at t = 0 is described by
particular solutions to the acoustic wave equation. By analogy with
(2), (5), and (9), we propose a frequency-wise parameterization of
the temporally sampled RIR inside continuous space Ω according to

h(r, n) =
1

L

L−1∑
l=0

hωl(r, n) =
1

L

L−1∑
l=0

hωl(r) ejωltn , (10)

with SW parameters avu(rmax, l) composing

hωl(r) =

Ml∑
v=0

v∑
u=−v

avu(rmax, l)
bv(klr)

bv(klrmax)
Y uv (θ, φ) (11)

for sampled frequencies ωl = 2πfsl/L and kl = ωl/c with l ∈
{0, . . . , L− 1}. The equality in (11) is valid for Ml =∞, however,
the magnitudes of the Bessel functions decay rapidly for v > kr and
accurate approximations are obtained by limiting the order of the
spherical harmonics to Ml ≥ klrmax [29]. Basically, (11) represents
the discrete Fourier transform (in time dimension) of the spatially
expanded RIR,H(r, l) =

∑L−1
n=0 h(r, n) e−2πjnl/L = hωl(r), and

(10) is the corresponding inverse discrete Fourier transform.

4.2. Physical Formulation of the Dynamic Sampling Problem

By substituting (10) into the dynamic model (1) and considering the
error-free case, the signal recorded by the microphone moving along
the trajectory r(n) = [rn, θn, φn]T ∈ Ω is

p(r(n), n) =

L−1∑
m=0

s(n−m)
1

L

L−1∑
l=0

hωl(r(n)) e2πj l
L
m

=

L−1∑
l=0

Sl(n)

Ml∑
v=0

v∑
u=−v

avu(rmax, l)

· bv(klrn)

bv(klrmax)
Y uv (θn, φn), (12)

with Sl(n) = 1/L
∑L−1
m=0 s(n−m) e2πjml/L corresponding to the

(inverse) discrete short-time Fourier transform of s(n) with window
length L and hop size of one. The resulting linear model reads

p =

L−1∑
l=0

SlYMl �BlDl al + η, (13)

where � denotes the Hadamard product, p ∈ RN is the mea-
surement vector, η ∈ RN is the error term due to noise and
order-limiting, Sl = diag {Sl(0), . . . , Sl(N − 1)} renders the
temporal evolution of discrete frequencies in s(n), diagonal matri-
ces Dl with entries 1/bv(klrmax) connect to the reference sphere

of radius rmax, the matrices YMl ∈ CN×Pl and Bl ∈ RN×Pl

with Pl = (Ml + 1)2 carry the sampled spherical harmonic and
Bessel functions, respectively, and the vectors al ∈ CPl contain
the corresponding SW parameters for each sampled frequency ωl,
al = [a00(rmax, l), . . . , aMlMl(rmax, l)]

T . The N × P matrix

Λ =
[
S0YM0 �B0D0, . . . ,SL−1YML−1 �BL−1DL−1

]
and the vector concatenation a =

[
aT0 ,a

T
1 , . . . ,a

T
L−1

]T ∈ CP of
P =

∑L−1
l=0 Pl parameters build up the system of linear equations

p = Λa+ η. (14)

4.3. Interpretation and Comparison

The moving microphone acquires the convolution results of the ex-
citation sequence with the spatio-temporal RIR inside Ω. In general,
the radii of the sampling points vary continuously, and, thus, each
sample results from an RIR belonging to an individual SW spec-
trum. However, by knowing the trajectory of the dynamic micro-
phone, the samples of various SW spectra are jointly represented as
the extrapolation of one shared SW spectrum on the sphere of radius
rmax. These aligning RIR parameters may be estimated by solving
the linear system (14), and, in turn, allow for RIR reconstruction at
arbitrary positions inside Ω according to (10) and (11). The parame-
ters avu(rmax, l) encode the continuous RIR sound-field for discrete
frequencies in time: they represent the SW spectrum (spatial fre-
quencies) on the sphere of radius rmax for sampled temporal frequen-
cies ωl. The corresponding field information inside Ω is provided by
spherical harmonics (angular reconstruction) and Bessel functions
(radial extrapolation), and the discrete delay of RIRs is modeled by
temporal solutions e2πjln/L. For reconstructing sound waves at ωl
inside a spherical volume Ωs of size V , the number of parameters
for the SW model is at least (Ml = klrmax)

PΩs(V, ωl) =

⌈
ωl

3

√
3V (4π)−1c−1 + 1

⌉2

. (15)

In contrast, the uniform-grid model from [23, 24] uses the
parameterization h(x, n) ≈

∑G
i=1 h(gi, n) fi(x), where the pa-

rameters h(gi, n) are RIRs at notional grid points gi with spacing
∆ < c/(2fmax), allowing for bandlimited interpolation by separable
sinc-function approximations fi(x) = fi(x) fi(y) fi(z) subject
to Cartesian coordinates x = [x, y, z]T . This model leads to a
very simple, structured linear system that enables straightforward
error analyses and extensions. It provides full scalability over room
dimensions and requires PΩc(V, ωl) = dωl D

√
V (2πc)−1+ 1eD pa-

rameters at a minimum for recovering sampled frequency ωl inside
a D-dimensional cubical region Ωc of size V . The high number of
parameters for D = 3 and the dynamic-sample representation in
terms of spatially concentrated, fast decaying interpolation filters
most likely lead to ill-posed or even underdetermined problems in
practical applications. The solution to this issues is the compressed-
sensing based recovery as proposed in [24]. This involves addition
sparsity constraints and sampling conditions.

In the experimental part of this paper, we compare non-sparse
and sparse uniform-grid recovery from dynamic samples with the
proposed approach. The spherical harmonic functions span the
entire sphere around the measurement volume. So, each spatio-
temporal sample contributes a global amount of wanted sound-field
parameters allowing for natural rendering of sound propagation in-
side Ω, and, thus, for spatially robust sound-field reconstruction. For
this, sparse recovery is not mandatory. Results in Sec. 5 are obtained
by least-squares solutions of (14), with orders Ml = dklrmaxe.



5. EXPERIMENTS AND RESULTS

By use of the image source method [31], we simulated dynamic
measurements in fifty reverberant environments, randomly chosen
according to the uniform distribution of room sizes [2; 10] m ×
[2; 10] m × [2; 5] m, reverberation times T60 ∈ [0.05; 0.25] s, and
sampling frequencies fs ∈ [2000; 8000] Hz (with corresponding
cutoffs). In each scenario, both the source position and the lo-
cation of the cubical measurement volume Ω with side lengths
4c/fs were randomly selected on condition of minimum distances
of 0.3 m to each other and to the room walls. For excitation, we
used R repetitions of an MLS with power σ2

s = 1 and period
length Lp ∈ {511, 1023, 2047} chosen subject to Lp ≥ L where
tL−1 = T60. The number of repetitions was varied with R = 900
and R = 450, in order to test dynamic recovery for long and short
acquisition times. Sampling of the moving microphone was simu-
lated along the Lissajous trajectory shown in Fig. 1, scaled to the
particular size of the target volume. This kind of trajectory has
been proposed for the original approach in [23]. For the recordings,
white Gaussian measurement noise was added at signal-to-noise
ratios (SNRs) of 10 dB, 20 dB, and 30 dB, respectively. To evaluate
spatial RIR recovery, we use the normalized system misalignment
(NSM) as in [23, 24], which measures the energy ratio between the
error signal and the corresponding true RIR. Accordingly, the mean
NSM (MNSM) is used to describe the reconstruction error over Ω.

For the uniform-grid parameterization according to [23, 24], we
modeled 73 grid points in three dimensions covering Ω entirely. Re-
garding the volume sizes, this corresponds to spatial oversampling
by factor 1.5. Lagrange interpolation filters of order five were used
in each spatial dimension. Non-sparse recovery of the grid param-
eters in the least-squares sense leads to MNSM � 1 in each ex-
periment, and, thus, is unsuitable, although the performed trajectory
as in Fig. 1 seems to be spatially dense, interpolation filters have
wide support of six grid points in each dimension, and high numbers
of N � P spatio-temporal samples are provided. Nevertheless, the
condition numbers of the involved sampling matrices explode for the
uniform-grid model. By doubling the number of dynamic samples
(R = 1800) along the same trajectory, adequate ranges of condition
numbers are obtained. However, in that case good performance in
reconstruction is spatially concentrated around the measurement tra-
jectory. At the same time, the physical interpretation of the dynamic
sampling model leads to accurate RIR reconstruction within the en-
tire measurement volume, also for less samples and lower SNR. This
is shown in Fig. 2 for a particular experiment.

For the compressed-sensing based grid recovery, we used the
fast update scheme from [24] based on iterative hard thresholding.
Spatial discrete Fourier transforms were used for the sparse repre-
sentation. The initial sparsity parameter was K0 = 4L, succes-
sively relaxed after every five iterations according toKi+1 = 1.5Ki,
and the step size µ = 0.15/L was chosen. In Fig. 3, reconstruc-
tion results in terms of MNSM are shown over all experiments by
use of boxplots. For long acquisition times, the physical approach
(Fig. 3(a)) and the sparse grid recovery (Fig. 3(b)) achieve compara-
ble accuracy in RIR reconstruction. The proposed method performs
slightly better in 30%, 80%, and 64% of the experiments for SNRs
of 10 dB, 20 dB, and 30 dB, respectively. However, for short ac-
quisition times, the sparse grid recovery (Fig. 3(d)) outperforms the
least-squares solutions of the presented spherical harmonics frame-
work (Fig. 3(c)). This result motivates compressed-sensing based
extensions of the physically interpreted dynamic model in future.
Existing stationary methods already use similar representations for
sparse sound-field analysis, synthesis, and interpolation [7, 32–34].

(a) (b)

Fig. 1. Lissajous trajectory used for dynamic sampling. (a) Three-
dimensional view and (b) y-z view.
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Fig. 2. Errors of spatially reconstructed RIRs in the centered yz-
plane of Ω for dynamic measurements at 7250 Hz inside a room with
T60 = 0.2 s using the trajectory in Fig. 1. Results of (a) the proposed
model for R = 900, SNR = 10 dB, and (b) the uniform-grid model
for R = 1800, SNR = 30 dB. Note the different colorbar ranges.

10 20 30

SNR [dB]

-35

-30

-25

-20

M
N

S
M

 [
d

B
]

(a)

10 20 30

SNR [dB]

-35

-30

-25

-20

M
N

S
M

 [
d

B
]

(b)

10 20 30

SNR [dB]

-28

-23

-18

-13

M
N

S
M

 [
d

B
]

(c)

10 20 30

SNR [dB]

-28

-23

-18

-13

M
N

S
M

 [
d

B
]

(d)
Fig. 3. Errors over all experiments regarding long (first row) and
short (second row) acquisition times for (a), (c) the proposed physi-
cal model and (b), (d) the sparse recovery on a uniform grid.

6. CONCLUSION

In this paper, we first presented a more general formulation of the
dynamic sampling problem in terms of spatially sampled basis func-
tions. Based on that, we introduced a physical model of continuously
sampled RIRs. This model allows for robust RIR reconstruction at
off-trajectory positions and achieves state-of-the-art results in sim-
ulated experiments for sufficiently long acquisition times. Future
works will be directed to compressed-sensing based extensions for
reducing sampling time.
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