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ABSTRACT

We present a solution to the general problem of estimat-
ing multiple orientations in multi-dimensional signals. The
solution is divided in a linear part that provides themixed-
orientation space(MOS), and a non-linear part that gives
the actual orientation spaces. We show that the angle be-
tween two overlaid orientations is an invariant that can be
derived from the MOS without solving the non-linear part,
and that all other invariants are generated by this angle. Re-
sults obtained for synthetic images illustrate that the above
invariant is a useful image feature for various applications
such as pattern recognition and texture segmentation.

1. INTRODUCTION

Estimation of local orientation has many applications in
multidimensional signal processing, e.g., edge detection [4,
15], motion estimation [12, 10, 8, 3], pattern analysis [4, 9,
3] non-isotropic filtering for image enhancement [1, 6], and
directional interpolation [7]. Multiple orientations appear in
non-opaque imagery like X-ray, Ultrasound, Magnetic Res-
onance, Computed Tomography, and Positron Emission To-
mography or in opaque structures like corners, crossings,
bifurcations, and textures. We present a general approach
for the estimation of multiple orientations. This formula-
tion is suitable for the estimation of multiple orientations in
signals of any dimension, although images, three- and four-
dimensional volumes are the most common occurrences of
such signals. Our approach is based on our solutions for
the estimation of transparent motions and multiple orienta-
tions in images as well as new insights in the structure of
signals suffering fromgeneralized aperture problems[11].
It generalizes and unifies previous approaches for the es-
timation of single orientation in gray-scale signals [3, 6],
orientation and motion in color images [15, 5] and multi-
ple transparent motion in gray-scale images [12]. Unlike
single orientation estimation, our approach to multiple ori-

Work supported by the Deutsche Forschungsgemeinschaft under
Ba 1176/7-2.

entations is carried out in two steps: a linear step where
the MOS is estimated followed by a non-linear step where
theorientation spaces are separated.When the orientation
spaces are unidimensional (lines), which is always the case
for images, the MOS can be represented by a tensor whose
components are the so-calledmixed-orientation parameters
(MOP). We show that all the scalar invariants of this tensor
are functions of the angle between the two lines. This angle
can be computed directly from the MOP without perform-
ing the separation of the orientations. The set of all such
angles across the signal is invariant to rotations, translations
and scaling of the signal and, therefore, provides a feature
space appropriate for tasks like pattern recognition, image
registration, etc.

2. THEORETICAL RESULTS

In what follows, a multivariate, multi-spectral signalf(x)
means an applicationf : Rp → Rq. The most important
cases are ‘color’ images and movies, i.e.,p = 2, 3 andq =
1, 2, 3, 4 but the actual values ofp, q play no important role
in the following analysis off(x).

2.1. Single orientation

We say thatf(x) is oriented in the (open) regionsΩ if there
is a subspaceE ⊂ Rp such that

f(x+v) = f(x) for all x,v; x,x+v ∈ Ω, v ∈ E. (1)

This concept is related to the concepts of linear symme-
try [3] and intrinsic dimension [16]. It is equivalent to
say that the intrinsic dimension off(x) restricted toΩ is
p − dim(E). The goal of orientation estimation is to ob-
tain E. We follow a differential approach introduced in [3]
for the estimation of an orientation hyperplane for gray-
scale signals. This approach is based on the observation
that Eq. (1) implies (and is actually equivalent to)

∂f(x)
∂v

= 0 for all x ∈ Ω andv ∈ E. (2)
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Eq. (2), in its turn, is equivalent to∫
Ω

∣∣∣∂f(x)
∂v

∣∣∣2 dΩ = 0. (3)

To evaluate Eq. (3), letx = (x1, . . . , xp)T andv = (v1, . . . ,
vp)T , thus,∂f(x)/∂v =

∑p
1 vjfxj

(x), wherefxj
(x) is a

short notation for∂f(x)/∂xj . Therefore,∣∣∣∂f(x)
∂v

∣∣∣2 =
∑
i,j

vivjfxi
(x) · fxj

(x). (4)

Eq. (3) can be rewritten as

vT Jv = 0, (5)

whereJ = J(f) is given by

J =
∫ fx1(x) · fx1(x) · · · fx1(x) · fxp

(x)
...

...
fxp

(x) · fx1(x) · · · fxp
(x) · fxp

(x)

dΩ. (6)

Alternatively, if f = (f1, . . . , fq)T , we have∂f(x)/∂v =
(∇f1 · v, . . . ,∇fn · v)T , and consequently,∣∣∣∂f(x)

∂v

∣∣∣2 = vT
( n∑

1

∇fk∇fT
k

)
v (7)

which implies (see [15] for a similar result obtained for
color images)

J =
q∑
1

J(fk). (8)

SinceJ is symmetric and non-negative, Eq. (5) is equiv-
alent to

Jv = 0 (9)

which means thatE is the null-eigenspace ofJ. In practice,
due to noise and other possible distortions,E is estimated
as the subspace spanning the set of solutions of

min vT Jv

s.t. |v|2 = 1,
(10)

i.e.,E is estimated as the eigenspace associated to the small-
est eigenvalues ofJ. Confidence on the estimation can thus
be derived from the eigenvalues (or, equivalently, scalar in-
variants) ofJ [12].

2.2. Multiple orientations

We say thatf(x) is multiple oriented inΩ if it is the additive
superposition of single oriented signals, i. e.,

f(x) =
N∑
1

gn(x) (11)

and eachgn is single oriented. Such decomposition is not
unique:f(x) = g(u · x,v · x) = g1(u · x) + g2(v · x) is
simultaneously oriented along a line and the superposition
of two signal oriented along planes.

Let En be the orientation space ofgn, then the goal
of multiple orientation estimation is to obtainE1, . . . , EN

given f(x). Note that neitherN norg1, . . . ,gN are known
in advance. For simplicity, we restrict the following to
f(x) = g1(x) + g2(x). The general case is straightforward
but for the separation of the orientation spaces. Letu and
v be vectors such that∂g1(x)/∂u = ∂g2(x)/∂v = 0, we
have

∂2f(x)
∂u∂v

= 0 (12)

which expands to∑
i≤j

cijfxixj
(x) = 0, (13)

where

cij =

{
ujvj if i = j

uivj + ujvi otherwise.
(14)

Proceeding in a way similar to the estimation of single ori-
entations, we take the square and integrate Eq. (13), to ob-
tain

cT J2c = 0, (15)

whereJ2 = J2(f) is given by

J2 =
∫

Ω

[
fxixj (x) · fxi′xj′ (x)

]
i≤j, i′≤j′

dΩ (16)

andc = c(u,v) = (cij)T
i≤j is the MOP vector. Similarly

to the single orientation case, Eq. (15) is solved in a least
square sense as the subspaceS2 spanning the solutions of

min sT J2s

s.t. |s|2 = 1.
(17)

Note that the unknownc in Eq. (15) has changed tos =
(sij)T

i≤j in the above equation because not all solutions of
Eq. (17) can account for Eq. (14).S2 is the subspace span-
ning the setC = {c(u,v); u ∈ E1,v ∈ E2}. We call
S2 MOS. It provides a implicit although complete represen-
tation of the orientations of the components off : E1, E2.
Note that Eq. (8) is also valid forJ2.

2.3. The mixed-orientation space

SinceC is not a subspace, we need a rule to decide which
elements ofS2 belong toC. For this, note that the entries of
Cs = 1

2 (u⊗v +v⊗u) andc are the same up to the factor
1/2 in the off-diagonal entries ofCs. The following applies
to Cs.
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Proposition 1 Let u,v be unit vectors andθ the angle be-
tween them. ThenCs = 1

2 (u ⊗ v + v ⊗ u) has only two
non-zero eigenvaluesλ1 = cos2 θ

2 andλ2 = − sin2 θ
2 with

corresponding eigenvectorsu + v andu− v.

If A is a matrix andp(λ) = |λI −A| =
∑p

i=0 Siλ
p−i

is its characteristic polynomial, the coefficientsSi are the
basic invariants (symmetric polynomials of the eigenvalues)
of A and analytically expressed in terms of the entries inA.
Prop. 1 allows to conclude that forCs

S1 = cos θ, S2 = − sin2 θ

4
, Si = 0 for i > 2. (18)

2.3.1. Characterization of the mixed-orientation parame-
ters

To decide which elementss ∈ S2 can be written in the form
s = c(u,v), we look at Eq. (15) in the Fourier domain
where it becomes

u · ω v · ω F(ω) = 0, (19)

whereF = (F1, . . . , Fq)T , Fk is the Fourier representation
of fk andω is the transformed variable. Eq. (19) means
thatF(ω) is supported by two subspaces of the Fourier do-
main whose orthogonal complements areE1 andE2. The
spectral decomposition of matrices allows to conclude that
s = c(u,v) if and only if the matrixS = (s′ij) with

s′ij =


sjj if i = j
sij

2 if i < j
sji

2 if i > j

(20)

has basic invariants satisfying

S2 < 0, Si = 0 for i > 2. (21)

2.3.2. Separation of the mixed-motion parameters

The separation of the orientation spacesE1, E2 given S2

involves solving the equation

c(u,v) = s (22)

for u,v givens ∈ S2. The vectors is restricted by Eq. (21).
Separation of the orientation spaces seems a non-trivial prob-
lem but for the casedim Ek = 1. In the absence of aper-
ture problems, separation of two transparent motion vec-
tors by eigenvalue analysis has been proposed by Shizawa
and Mase [13]. An analytical method for the separation of
N transparent motion vectors has been presented in [12].
For the important case of images the only non-trivial value
for dim Ek is oneand different approaches can be used for
the separation of the orientations parameters [2, 14]. The

casedim Ek = 1 is simpler because it impliesdimS2 = 1
and thus, Eq. (21) is either true or false for the wholeS2.
Thus, for two unidimensional orientations,J2 has a non-
singular zero eigenvalue and its null eigenvector must sat-
isfy Eq. (21). Under the previous conditions, Prop. 1 applies
and the orientation can be recovered from the relationships

u = cos
θ

2
e1 + sin

θ

2
e2

v = cos
θ

2
e1 − sin

θ

2
e2

(23)

whereen is the unit eigenvectors forλn, n = 1, 2. Note
that, due to Prop. 1,cos θ

2 =
√

λ1 andsin θ
2 =

√
−λ2 but

the eigenvalues analysis can be performed analytically by
the use of Eq. (18) and basic trigonometric identities.

As said before,dimSN > 1 never occurs in 2D-images,
where except for flat components one can expect only uni-
dimensional orientations spaces. Nevertheless, the prob-
lem already appears in the processing of transparencies in
movies where two components can suffer from theaperture
problemin the same local neighborhood. A categorization
of the oriented patterns appearing in the components off(x)
based in the rank ofJN has appeared in [11].

2.3.3. Invariants of the mixed-orientation parameters

Being an eigenvector ofJ2, it clear thatc is an invariant of
f(x). From the relationship betweenc andCs, it is a tensor
invariant. Thus, it is interesting to see what scalar invariants
of f(x) are coded inc. Prop. 1 has this answer. All scalar
invariants ofc are generated by the angleθ between the
orientations. In fact, any scalar invariant can be written
as a functiong(λ1, . . . , λp) of the eigenvalues ofCs and
consequently as a functiong(θ).

3. RESULTS

We implemented an hierachical algorithm that first tries to
fit a single orientation model and next a double orientation
model to the signal. Model selection is based on the in-
variants ofJN according to [12]:H > εN and M

√
K <

cN
M−1
√

S, whereM = orderJN , H = S1
M , S = SM−1

M
andK = SM . Fig. 1 shows a synthetic double orientated
noisy image with orientations differing by45◦ (half-left)
and50◦ (half-right). Mean and standard deviation of the es-
timated angles are45.19◦, 0.43◦ (50.96, 0.43) for the half-
left (half-right) of the image. The angle increases continu-
ously from45◦ to 50◦ in the transition area between both
regions. Parmeters for this example are: regionΩ of 9 × 9
pixels,εN = 0.01, c1 = 0.2, c2 = 0.4.

To deal with opaque structures, such as corners, where
the additive superposition model is not exactly met, we ap-
ply a two step procedure: firstly, pixels where both sin-
gle and double orientation models are rejected are marked;
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Fig. 1. Left: synthetic double orientated noisy image; orien-
tations differ by45◦ (half-left) and50◦ (half-right); SNR is
25 dB. Up-right: color plot of the estimated angles. Down-
right: section of the image showing the estimated angles.

Fig. 2. Middle-left: Segmentation of ‘A’ showing regions
with single (light gray) and double (dark gray) orientations.
Right: same for ‘A’ rotated by90◦. The mean and standard-
deviation for the estimation of the three different angles are
64.6, 0.19; 31.3, 0.19; 83.9, 0.21 for both images; true val-
ues are60, 38, 82.

next, the size of the integration regionΩ is incresead, marked
pixels are excluded from it, and the algorithm is applied to
the marked pixels only. This procedure excludes points that
do not meet the additive superpostion assumption and allow
for the estimation of two orientations at non-opaque struc-
tures. Fig. 2 shows results for an A-shaped image. Parame-
ters are: regionΩ of size7× 7 and21× 21 for the first and
second step, respectively;ε = 0.01; c1 = 0.1; andc2 = 0.2.
In all examples, derivatives were estimated by finite differ-
ences.

4. CONCLUSIONS

We have shown that the angle between two local orienta-
tions in an image is a basic scalar invariant that can be
derived from the MOS. The MOS is obtained based on a
linearization of the non-linear constraint equations that de-
fine the multiple orientations. In addition, we have shown
that all other invariants of the signal that could be derived
from the MOS, can be expressed in terms of the angle. Re-
sults have been derived within a more general framework
that is not restricted to the case of two-dimensional images
and one-dimensional orientation spaces. We have presented
analytical solutions for the separations of the orientation
spaces of dimension one. The constraints for estimating two
oriented subspaces with any codimension have also been de-

rived but the numerical problem of solving the non-linear
separation of the MOS remains open.

The results that we present are meant to illustrate the
potential for applications. The local angle between lines
is a useful feature for pattern recognition since it contains
more information than corner or junction detectors. The
texture example illustrates that even small and hardly visible
differences in the local angle, as they can occur in a fabric
production, can be reliably segmented by our algorithm.
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