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ABSTRACT
In this paper, we present a new class of linear-phase cosine-
modulated filter banks. In contrast to the2M band structure
of the linear-phase DCT-II filter bank derived by Lin and
Vaidyanathan, our filter bank hasM bands and requires dif-
ferent prototype filters for the analysis and synthesis. Given
the PR constraints of the bank, we derive a non-orthogonal
lattice structure for implementing the polyphase components
of the prototype filters. This structure shares similarities
with the one of DCT-IV filter banks and automatically guar-
antees perfect reconstruction of the bank. It furthermore al-
lows to specify the values of the filters’ frequency responses
at certain frequencies, thus allowing the design of linear-
phase cosine-modulated filter banks without DC leakage.
Since analysis and synthesis prototype filters are different,
we investigate several cost functions for their design.

1. INTRODUCTION

In image subband coding one prefers linear-phase filters
since they allow an easy treatment of the image boundaries
[1] and distribute quantization errors symmetrically over the
edges in the image.

Due to the very high data rates occurring in image and
especially in video coding applications, the computational
cost for the signal decomposition and reconstruction must
be strictly limited. Modulated filter banks are known to pro-
vide a low implementation cost and are also well suited for a
parallel implementation since the polyphase filtering of the
bank can be done in parallel. The most popular modulation
scheme is given by cosine modulation. However, for filter
banks based on a DCT-IV modulation it has been shown
in [2] that although given a linear-phase prototype filter the
analysis and synthesis filters cannot be linear phase.

A cosine-modulated filter bank with linear-phase analy-
sis and synthesis filters which is based on a2M bank struc-
ture and uses DCT-II and DST-II modulation has been de-
rived by Lin and Vaidyanathan in [3] and further studied in
[4, 5, 6]. One peculiar property of this filter bank is the fact
that the center of symmetry for analysis filters being modu-
lated by DCT and those modulated by DST are shifted byM

samples. This fact leads to some complications when apply-

ing symmetric extension methods in order to provide a sup-
port preservative decomposition [7]. For example, the sub-
bands will have a different number of non-redundant sam-
ples.

In this paper we present a new class of DCT-II filter
banks with linear-phase analysis and synthesis filters be-
ing based on a DCT-II modulation and derive constraints
for perfect reconstruction of this bank. For reasons of con-
ciseness we restrict ourselves to the case where the filter
lengthN is connected to the number of subbandsM by
N = 2rM +M with r being an integer andM even. The
PR constraints will be given for the general biorthogonal
case and then restricted to linear-phase prototypes and fil-
ter banks without DC leakage since experiences in image
coding have shown that linear-phase filters and perfect re-
construction of the bank are not sufficient in order to obtain
a good quality of the reconstructed images at a given com-
pression rate. Artifacts such as the checkerboard effect do
not occur if all analysis filters, apart from the lowpass, have
a zero at frequency zero.

2. THE FILTER BANK

The analysis and synthesis filters,hk(n) andfk(n), respec-
tively, of the considered cosine-modulated filter bank are
given by

hk(n) = �kpa(n) cos
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wherepa(n) andps(n) denote the length-N analysis and
synthesis prototype filters, respectively. The constraints for
perfect reconstruction of the filter bank can be expressed by
means of the analysis and synthesis polyphase matrix,E(z)

andR(z), respectively, that write
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with

[C1]k;n = �k cos(
�k

M
(n+ 0:5))

[C2]k;n = �k cos(
�k
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k = 0; : : : ;M � 1; n = 0; : : : ; 2M � 1

g0(z) = diagfG0(z); : : : ; GM�1(z)g
g1(z) = diagfGM (z); : : : ; G2M�1(z)g
k0(z) = diagfK2M�1(z); : : : ;KM (z)g
k1(z) = diagfKM�1(z); : : : ;K0(z)g

andg`(m) = pa(2mM+`) andk`(m) = ps(2mM+`) be-
ing the`-th type-1 polyphase component of the analysis and
synthesis prototype, respectively. Taking into consideration
thatR(z)E(z) = z�2rIM has to be satisfied for perfect re-
construction with an overall system delay ofN � 1 samples
[9] and that the matricesC2 andC1 satisfy
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the constraints for PR can be expressed as

K`(z)G`(z) =
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Given the analysis polyphase filters in (5) the matrixK`(z)

writes
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where the denominator has to be a monomial in order to
obtain FIR synthesis polyphase components. Thus, the PR
constraint on the analysis filters writes

G`(z)GM�1�`(z)� z�1GM+`(z)G2M�1�`(z) = �2`z
�r

(7)

and the synthesis polyphase filters can be obtained from the
analysis ones as

K`(z) =
G`(z)

2M�2`
; K`+M (z) = �G`+M (z)

2M�2`
(8)

` = 0; : : : ;M � 1; �2M�1�` = �M�1�` = �`

3. LINEAR PHASE ANALYSIS AND SYNTHESIS
FILTERS

It can easily be verified that the analysis and synthesis filters
of lengthN = 2rM +M in (1) and (2) are linear phase if
the prototype filterspa(n) andps(n) are linear phase. In this
case, the following relationship holds true for the analysis
polyphase filters

GM�1�`(z) = z�r ~G`(z) =
z�r

2M�2`

~K`(z) (9)

G2M�1�`(z) = z�r+1 ~G`+M (z) = � z�r+1
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~K`+M (z)

(10)
` = 0; : : : ;M=2� 1

In the upper two equations we have taken into account that
the polyphase filtersG0(z) toGM�1(z) are of lengthr +1

and the remaining ones of lengthr. Equation (7) now writes

G`(z) ~K`(z) +GM+`(z) ~KM+`(z) =
1

2M
(11)

Note that this PR constraint differs from the one derived for
DCT-IV filter banks in [8] just by the fact that it contains
analysis and synthesis polyphase components and that due
to (8) analysis and synthesis prototype filter cannot be equal.

4. THE LATTICE STRUCTURE

A lattice structure that automatically keeps the linear phase
property of the analysis prototype filter and satisfies (7) is
given by the following formulation:�
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A second solution is given when swapping the left-hand
sides of the upper equations. That is, swappingG`(z) with
GM�1�`(z) as well asG`+M (z) with G2M�1�`(z). For
the synthesis filters we can use the same structure with a
different scaling factor. The new scaling factor can be cal-
culated using (8).

It can easily be verified that the upper lattice structure
satisfies the PR constraint, when reformulating (7) as�
G`(z) G`+M (z)
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5. NO DC LEAKAGE

The filter bank is free of DC leakage if the analysis filters
Hk(!) for k > 0, have at least one zero at frequency zero,
i.e. Hk(0) = 0 for k > 0. The lowpass filter has to satisfy
H0(0) = �. The vectorh(z) = [H0(z); : : : ; HM�1(z)]

T

containing all analysis filters can be written as [9]

h(z) = E(zM )e(z) (15)

with E(z) from (3) ande(z) = [1; z�1; : : : ; z�(M�1)]T

being the delay chain. To obtain a formulation for a DCT-II
filter bank without DC leakage, we replacez in (15) byej!

and set! = 0. Thus,h(1) writes

h(1) = C1
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and has to satisfyh(1) = [�; 0; : : : ; 0]T . A solution is
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This is the condition the filter bank has to satisfy in order to
provide no DC leakage. Note that the result is in accordance
with the fact that the prototype filters should be linear phase.
Since the polyphase filtersG`(z) andGM�1�`(z) as well
G`+M (z) andG2M�1�`(z) contain the same coefficients,
but in inverse order, both sums, i.e. for` and` + M are
equal.

The lattice structure presented in the last section can be
used such as to guarantee not only PR but also no DC leak-
age. We first have to replacez by one in (12) and (13) ob-
taining � P
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i g`+M (i)

�
= �`

�
1 0

0 �1

�
� (18)

r�1Y
i=1

�
cosh(�`;i) sinh(�`;i)

sinh(�`;i) cosh(�`;i)

� �
cosh(�`;0)

sinh(�`;0)

�
�P

i gM�1�`(i)P
i g2M�1�`(i)

�
= �` � (19)

r�1Y
i=1

�
cosh(�`;i) � sinh(�`;i)

� sinh(�`;i) cosh(�`;i)

��
cosh(�`;0)

� sinh(�`;0)

�

Using basic theorems of the hyperbolic sine and cosine func-
tion, the upper relationships can be formulated as� P
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and the constraint for no DC leakage given in (17) is ful-
filled if
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Using cosh(x) =
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y2 + 1) we obtain as a constraint on the angles
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Thus, if we remove one angle from the optimization param-
eter space and use that angle in order to satisfy the upper
equation we can easily guarantee that the filter bank has no
DC leakage.

6. PROTOTYPE DESIGN RESULTS

For the prototype design we used a nonlinear optimization
routine (fminu.m from MATLAB) and as a cost function the
sum of the stopband energies of the analysis and synthesis
prototypes. The angles�`;i with i = 0; : : : ; r�2 where op-
timized such as to minimize the cost function. For each`we
tried both realization possibilities for the polyphase filters:
the one given in (12) and (13) as well as the one where the
G`(z) andGM�1�`(z) were swapped as well asG`+M (z)

andG2M�1�`(z). Out of all possibilities we chose the one
with the lowest cost function. Figure 1 shows the amplitude
response of the analysis and synthesis prototype filters for
N = 28 andM = 4. The value� has been chosen as

p
M

in order to obtain the same value of the amplitude response
at frequency zero for the analysis and synthesis prototype.

In a second example we chose the same filter parame-
ters but weighted the stopband energy of the analysis pro-
totype with a factor of 100 before adding it to the synthesis
prototype’s stopband energy, thus giving more emphasis on
the optimization of the analysis prototype than the synthesis
prototype. The resulting prototype filters are shown in Fig-
ure 2. Figure 3 shows the analysis filters using the prototype
in Figure 2. It can be seen that all analysis filters apart from
the lowpass filter have a zero at! = 0.

7. CONCLUSION

In this paper we have presented a class of modulated fil-
ter banks based on a DCT-II with linear-phase analysis and
synthesis filters and no DC leakage. Although we have only
treated the case where the filter length is given asN =

2rM + M andM even, the formalism can easily be ex-
tended to oddM and arbitrary filter lengths using similar
derivations as in [6, 5]. In the simulations it turns out that a
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Figure 1: Normalized amplitude response of analysis and
synthesis prototype forN = 28 andM = 4

crucial point of this filter bank is the fact that analysis and
synthesis prototypes are not equal but strictly connected via
(8). It has not been investigated yet, whether this connec-
tion prevents the design of prototypes with better properties
than the ones shown in the examples, or if the optimization
routine stopped in a local minimum.
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