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Abstract—In this paper we propose to extend a recently introduced
clustering approach for solving the permutation ambiguity in convolutive
blind source separation to a case where spatial aliasing occurs. A
well known approach for separation of sources is the transformation
to the time-frequency domain, where the task can be reduced to
multiple instantaneous problems. While these may be easily solved using
independent component analysis, this approach has the drawback of the
inherent permutation and scaling ambiguities, which have to be corrected
before the transformation to the time domain or otherwise the whole
process will fail. Here, we extend an existing clustering approach to
cope with the case where spatial aliasing occurs. This is achieved by
exploiting the direction information of whole clusters instead of single
bins. The performance of the proposed method is evaluated on real-room
recordings.

Index Terms—Blind source separation, spatial aliasing, permutation
problem, convolutive mixture, frequency-domain ICA

I. INTRODUCTION

When dealing with linear and instantaneous mixtures of non-

Gaussian signals, blind separation may be performed using the Inde-

pendent Component Analysis (ICA). For this case, several algorithms

have been proposed [1], [2], [3]. The approach is called blind, as

typically neither the sources nor the mixing system are known.

Real-world mixtures of acoustic signals such as speech are not

separable using this simple approach. With finite speed of sound

and multiple reflections in closed rooms, the signals arrive at the

microphones multiple times with different delays. This convolutive

mixing process is usually modeled using FIR filters. For realistic

scenarios, filters with several thousand coefficients are needed. For

the separation, a set of unmixing filters with at least the same length

is needed.

It is possible to calculate these filters directly in the time domain

[4], [5], but these methods usually suffer from high computational

load and often poor convergence. Therefore, an often used approach

is the transformation to the time-frequency domain, where the con-

volution becomes a multiplication and instantaneous ICA algorithms

can be applied in each frequency bin independently. However, with

this approach, the discrete bins usually have different scalings, and

they can be arbitrarily permuted. Without correction of the different

scalings, a filtered version of the sources will be retrieved. A widely

used solution is the minimal distortion principle [6] or inverse

postfilters [7]. These methods do not add any additional distortions

while accepting the filtering of the mixing system. Other approaches

solve the scaling ambiguity with the aim of filter shortening [8] or

shaping [9], [10].

Without the correction of the varying permutations in the single

frequency bins, different source signals will appear at different

frequencies in different permutations and the whole process will fail.

There are two main approaches for the solution of this permutation

problem. The first group of algorithms relies on the characteristics of

the unmixing matrices. By interpretation as beamformer, the direction

of arrival (DOA) can be used to design a depermutation criterion [11].

Alternative formulations evaluate directivity patterns [12] or time

differences of arrivals (TDOA) [13], [14], [15]. Here, an assumption

of specific directions of the sources is exploited, which is only true

when the reverberation is low enough. Otherwise only part of the

frequencies can be assigned and the remaining ones have to be aligned

using other techniques [11]. Time and phase differences exhibit a

circularity property, which result in spatial aliasing. Therefore, in

order to deal with higher frequencies and larger microphone arrays,

it is necessary to resolve this additional ambiguity. For example, in

[16] the authors used a circular-linear model and clustering with a

sequential variant of Random Sample Consensus for using up to six-

fold larger array compared to the no aliasing case.

The second group of algorithms exploits the similarities of the

time structure of the separated bins, for example by assuming a

high correlation between neighboring bins [7]. This method has

been extended in [17], [18] to use activity patterns. In [19] the

authors proposed a dyadic sorting scheme by comparing an increasing

number of frequency bins in each iteration. The dyadic sorting has

also been used in [20] together with a sparsity criterion and in [21] in

a combination of non-decimating filter bank and spectral summation.

Other approaches include a statistical modeling of the single bins

using the generalized Gaussian distribution. Small differences of the

parameters lead to a depermutation criterion in [22] and [23].

In [24] a two stage method has been introduced which employs

both of the above mentioned properties. At the first stage, clusters

of robust depermuted bins are found. The robustness is achieved by

a very conservative criterion of a cluster being non ambiguous by

containing only bins which are all positively correlated to each other.

In the second stage, by calculating an average TDOA of a cluster, a

robust depermutation could be achieved.

While being computationally easy, the method from [24] fails in

the case of spatial aliasing. In this work we extend this approach to

cope with this ambiguity. The proposed circular model allows for a

direct estimation of TDOA in this case, while still having negligible

computational cost compared to the ICA stage. The performance of

the proposed method will be shown on real world examples.

II. MODEL AND METHODS

The instantaneous mixing and unmixing processes form the basis

for the convolutive case. Both methods will be described in the

following.

A. BSS for instantaneous mixtures

The instantaneous mixing process of N sources into N observa-

tions is modeled by an N × N matrix A. With the source vector
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s(n) = [s1(n), . . . , sN (n)]T and negligible measurement noise, the

observation signals x(n) = [x1(n), . . . , xN (n)]T are given by

x(n) = A s(n). (1)

The separation is again a multiplication with a matrix B:

y(n) = Bx(n) (2)

with y(n) = [y1(n), . . . , yN (n)]T . The only source of information

for the estimation of B is the observed process x(n). The separation

is successful when B can be estimated so that BA = DΠ with

Π being a permutation matrix and D being an arbitrary diagonal

matrix. These two matrices stand for the two ambiguities of BSS.

The signals may appear in any order and can be arbitrarily scaled.

For the separation, we use the well known gradient-based update

rule [1]

Bk+1 = Bk +ΔBk (3)

with

ΔBk = μk

(
I − E

{
g(y)yT})Bk. (4)

The term g(y) = (g1(y1), . . . gn(yn)) is a component-wise vector

function of nonlinear score functions gi(si) = −p′i(si)/pi(si) where

pi(si) are the assumed source probability densities.

B. Convolutive mixtures

When dealing with real-world acoustic scenarios it is necessary to

consider reverberation. The mixing system can be modeled by FIR

filters of length L:

x(n) = H(n) ∗ s(n) =
L−1∑
l=0

H(l)s(n− l) (5)

where H(n) is a sequence of N×N matrices containing the impulse

responses of the mixing channels. For the separation, we use FIR

filters of length M and obtain

y(n) = W(n) ∗ x(n) =
M−1∑
l=0

W(l)x(n− l) (6)

with W(n) containing the unmixing coefficients.

Using the short-time Fourier transform (STFT), the signals can

be transformed to the time-frequency domain, where the convolution

approximately becomes a multiplication:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . ,K − 1 (7)

with K being the FFT length. The major benefit of this approach is

the possibility to estimate the unmixing matrices for each frequency

independently, however, at the price of possible permutation and

scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ) (8)

where Π(ω) is a frequency-dependent permutation matrix and D(ω)
an arbitrary diagonal scaling matrix.

Without correction of scaling, a filtered version of the sources is

recovered. Using the minimal distortion principle [6] to resolve this

ambiguity, the unmixing matrix reads

W ′(ω) = dg(W−1(ω)) ·W (ω) (9)

with dg(·) returning the argument with all off-diagonal elements set

to zero.

Without correction of the permutation, different signals will be

restored at different frequencies and the whole separation process

will fail. In the next section, we will propose a new scheme for

calculation of the depermutation.

III. DEPERMUTATION ALGORITHMS

In this section, we describe the basic algorithms for depermutation.

At first, the basics of the correlation approach with the use of activity

patterns will be revised and the robust clustering method from [24]

will be shortly summarized. Using this clustering results a new

method for explicit estimation for TDOAs in the presence of spatial

aliasing will be derived.

A. Correlation approaches

Many depermutation algorithms exploit the statistics of the

separated signals. For example, in [7] the criterion is based on the

assumption of high correlation of envelopes of neighboring bins.

With V (ω, τ) = |Y (ω, τ)|, the correlation between two bins k and

l is defined as

ρqp(ωk, ωl) =

∑T −1
τ=0 Vq(ωk, τ)Vp(ωl, τ)√∑T −1

τ=0 Vq
2(ωk, τ)

√∑T −1
τ=0 Vp

2(ωl, τ)
(10)

where p, q are the indices of the separated signals, Vq(ωk, τ) is the

q-th element of V (ωk, τ), and T is the number of frames. The

alignment of the bins is made on the basis of the ratio

rkl =
ρpp(ωk, ωl) + ρqq(ωk, ωl)

ρpq(ωk, ωl) + ρqp(ωk, ωl)
. (11)

With rkl > 1 the bins are assumed to be correctly aligned and

otherwise a permutation has occurred. The simple method, where

consecutive bins are examined, is not robust, as single wrong permu-

tations lead to whole blocks of falsely permuted bins.

B. Activity patterns

In [17], [18] an alternative method to the correlation of the

envelopes has been proposed. Here, the authors exploit the sparsity of

speech signals and compute the dominance of the i-th single separated

signal as

powRatioi(ωk, τ) =
‖wi(ωk)yi(ωk, τ)‖2∑N

k=1 ‖wk(ωk)yk(ωk, τ)‖2
. (12)

The values of these activity patterns are normalized to [0; 1]. A value

of approximately one indicates a dominance of the given signal,

while low values denote the dominance of some other signals. The

comparison of activity patterns instead of envelopes by (10) and (11)

is usually more robust. However, this assumption is violated when

one signal is dominant the whole time. This can be problematic for

speech signals, which usually have no energy below the fundamental

frequency.

C. Robust clustering

The assumption of correlated envelopes or activity patterns is

usually only valid for neighboring bins. In Fig. 1 (a) an example

using the dataset from [25] is shown. Here, a white point indicates

a correct and a black point (rkl < 1) a false decision for a perfectly

depermuted case. The upper right corner with a high number of black

points indicates a very low similarity of low and high frequencies for

the signals.

In [24] a new clustering method has been introduced. Based on the

alignment coefficients rkl, clusters of bins are identified which are

correctly depermuted. In order to achieve robustness a conservative

criterion is proposed. Using a sequential greedy algorithm a bin is

added to a cluster only if it has the same correlation to all previous

bins. Otherwise, a new cluster is started. In Fig. 1 (b) the result

of the clustering procedure is shown. Here, black areas indicate

nonambiguous correlation coefficients and mark the boundaries of
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Fig. 1. Visualization of the robust clustering method. a) Alignment co-
efficients for all bins from (11) using activity patterns (12). White points
(rkl > 1) indicate a correct and black (rkl < 1) a false decision for
a perfectly depermuted case. b) The detected clusters with nonambiguous
coefficients.

the clusters. In this case, 19 clusters have been identified, which is a

substantial reduction from 4097 bins.

D. Average TDOA in the case of no spatial aliasing

For the case of no spatial aliasing, the authors of [13] calculate

TDOA for the 2× 2-case for the single bins as

TDOAi(ωk) =
1

2πfk
arg

(
[H(ωk)]1i
[H(ωk)]2i

)
(13)

with [H(ωk)]li, l ∈ {1, 2} being the coefficients of the mixing

matrix corresponding to the i-th source, fk the frequency and arg(·)
calculating the phase of a complex number in the range (−π;π].
With this formulation, no information about the microphone distance

is needed.

In [13] the TDOAs have been used directly for clustering and with

some additional confidence functions a depermutation for almost all

bins has been achieved. In [24] the authors calculated an average

cluster TDOA:

acTDOAi(Cm) = mean(TDOAi(ωk)), k ∈ Cm (14)

with Cm being a set of indices of the bins of the m-th cluster

obtained by the above robust clustering. The averaged cluster TDOAs

could be easily arranged for a global alignment by a simple distance

measurement

2∑
i=1

(acTDOAj(Cm)− acTDOAi(CM ))2, j ∈ {1, 2} (15)

with CM being the largest cluster.

This method is robust due to the fact that averaging the TDOAs

removes the need to deal with outliers which are quite often a problem

in the lower frequencies.

E. Average TDOA in the case of spatial aliasing

In Fig. 2 the results of the TDOA calculation in the case of spatial

aliasing are shown. Here, we can visualize three major areas. The

lower frequencies up to around bin 600 show a high variance of

the estimated TDOAs. This is the area, where the averaging used to

calculate cluster TDOA is very effective at dealing with outliers and

giving a good estimate. The second area up to about frequency bin

1600 is quite unproblematic. Even a simple clustering procedure can

yield a correct depermutation. The third part above 1600 shows an

example of spatial aliasing. Here, the estimated TODAs do not have

a consistent value and even overlap with the other channel.
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Fig. 2. TDOAs of single frequency bins for a 2 × 2 case calculated using
(13). The additional lines indicate the range of aliasing free TDOA values.
The discontinuity at frequency bin 1600 indicates spatial aliasing.
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Fig. 3. Directivity plot for some frequency bins between 3000 and 4000.
The single patterns are periodic with different periods. The overall picture is
very chaotic. The positions of common minima are hard to estimate.

In the following, we propose a method to deal with this case. First

we recall, that the estimated TDOA using (13) is the minimum of

the central period of a directivity pattern [12]

Fi(ωk, d) =
∣∣∣[H(ωk)]1i − [H(ωk)]2i e

−jωd/c
∣∣∣ (16)

with c the speed of sound and d the different values for TDOAs.

In Fig. 3 several directivity patterns for frequencies between 3000

and 4000 Hz are shown. The directivity patterns are periodic and the

period is varying with frequency. When looking at multiple directivity

patterns at once, the situation is quite chaotic. The typical way to

estimate the TDOAs is to cluster the minima either in one period

[13] or try to find a global minimum for all frequencies at once [16].

This is a computationally demanding approach and needs to deal with

noise and outliers.

Here, we propose another approach which is inspired by the

directivity patterns and calculate the TDOA by using the information

from the robust clustering from Section III-C.

First, we define a cluster directivity pattern Gi(m, d) for the m-th

cluster as

Gi(Cm, d) =
∑

k∈Cm

pdist

(
[H(ωk)]1i
[H(ωk)]2i

, e−jωd/c

)2

(17)

with

pdist(a, b) = mod( � (a)− � (b) + π, 2π)− π (18)

being the distance of the phases of two complex numbers with regard

to the 2π periodicity, � (·) the phase in the range (−π;π], and

mod(a, b) the remainder of the division a/b.

In (17) the ideal phases of a time delay d are compared to the actual

phases calculated using the TDOAs, while correctly considering the
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Fig. 4. The cluster directivity pattern for the largest cluster from Fig. 1
normalized to the range [0, 1]. The global minima of both functions are
correctly indicating the time delay of both channels.

2π periodicity. Therefore, it is feasible to distinguish between the

different minima in case of spatial aliasing, which is not possible

using single frequency bins as in (13) or (16).

In Fig. 4 the normalized values of Gi(Cm, d) for the biggest cluster

(bins 2263 to 3983) from the previous example are shown. The global

minima of both functions for both channels clearly indicate to correct

TDOAs and are able to resolve the problem of spatial aliasing. The

other local minima show the periodic repetitions, but compared to

Fig. 3, where they have the same value as the global ones, they do

not pose a problem.

The cluster TDOAs can be estimated by finding the position of the

minimum by

acTDOAi(Cm) = argmin
d

Gi(Cm, d) (19)

Due to the periodicities in pdist(a, b) this minimum cannot be found

directly. Still, being a one-dimensional problem the minimum may

be found, for example, by dense sampling. Due to the small number

of clusters, the computational cost is negligible compared to the ICA

stage.

Finally, in the last stage of the algorithm the clusters are arranged

as the biggest one using (15) as in [24]. In Fig. 5 the result is shown.

Here, the spatial aliasing has been resolved correctly. Additionally,

the lower frequencies are much easier to depermute due to the

averaging effect of clustering.

IV. SIMULATIONS

The experiments using the proposed algorithm have been per-

formed using real-world data available at [25]. The setup was chosen

to be similar to that in [24] and [11]. With a sampling rate of 8
kHz, the FFT length was chosen to be 8192, and a 2048 point Hann

analysis window has been used. For the ICA stage 400 iterations of

(4) in each frequency bin have been performed.

The dataset contains four recordings of four different speech

signals in a low reverberant room. As the signals do not have

meaningful energy below 110 Hz, only bins above this frequency

are taken into consideration. In Table I the results are shown.

In dataset 1 microphones one and two have been used. With a

distance of 4cm there was no spatial aliasing. The depermutaion

has been successful and the results are very close to the algorithm

from [24]. In dataset 2 microphones one and three have been used.

Here the distance is 8cm and there is spatial aliasing above 1700Hz.

This is the dataset used to visualize the algorithm in Fig. 1 to 5.

Again the overall procedure has been successful. Dataset 3 contains

recordings from microphone one and four with a distance of 12cm.

Again the performance of is very good. The last dataset is an average
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Fig. 5. The final clustering result. Due to the averaging effect of clustering,
lower frequencies are easier to depermute. The spatial aliasing has been
correctly resolved for the higher frequencies.

TABLE I
COMPARISON OF THE RESULTS FOR DIFFERENT DEPERMUTATION

ALGORITHMS IN TERMS OF SEPARATION PERFORMANCE (SIR) IN DB.

Algorithm Set 1 Set 2 Set 3 Set 4

Proposed 17.3 18.0 17.2 20.1

Sparsity [20] 15.4 15.9 15.0 13.8

Dyadic sorting [19] 2.7 3.5 2.8 4.0

Non blind 17.6 18.8 17.9 21.8

calculated for all combinations of the four available signals and the

three available distances of microphones. In comparison to the other

used algorithms from [19] and [20], the proposed one is performing

significantly better.

V. CONCLUSIONS

In this paper we proposed a new approach for solving the permu-

tation ambiguity in convolutive blind source separation for the case

where spatial aliasing occurs. The new method is using a previously

introduced robust clustering method on single frequency bins. Using

this information a new solution for calculating the time differences

of arrival for a cluster is proposed. The new method is able to resolve

the ambiguities of spatial aliasing. The performance of the proposed

method is evaluated on real-room recordings.
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