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Abstract. Vital and spontaneous motion causes major artifacts in MRI.
In this paper a method is presented which reduces subpixel motion arti-
facts via computational post processing on a complete MR scan without
additional data. On the compressed sparse MRI representation, trans-
lational subpixel motion is estimated iteratively from a fully sampled,
but motion corrupted k-space, and motion free images are reconstructed
by linear interpolation. Motion adjusted results are presented for the
Shepp-Logan phantom and brainweb data.

1 Introduction

In MRI, patient motion causes artifacts like ghost replications of the object.
Therefore, spontaneous and unavoidable motion like heart beating or breathing
causes problems in clinical diagnosis. Regularly applied methods such as motion
avoidance through extended breath holding significantly reduces patient comfort.
On the other hand, a reconstruction including motion correction is a complex
task, due to the fact that each k-space point is related to two degrees of freedom
in two dimensional rigid motion.

In compressed sensing, the data compressibility is used to reduce the amount
of measurements that are necessary to reconstruct an image from the k-space [1].
The time needed for an MRI scan and consequently the possibility of patient
motion is reduced, but it can not be excluded. Other approaches use navigators
which are additionally recorded information used to calculate the motion which
is included in reconstruction [2].

A sparsity based algorithm was proposed in [3]. The sparsity of MR images
in the wavelet domain and the redundancy of a fully sampled k-space are used
to estimate rigid motion. However, the phase-based motion model used in this
approach is not suitable for realistic subpixel movement. Subpixel frequency
interpolation causes ringing artifacts in the image which has to be avoided.

2 Materials and methods

The method proposed in this paper introduces a linear subpixel motion inter-
polation model in the image domain. The motion used for reconstruction is
blindly estimated on a fully sampled k-space without additional measurements.
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The sparsity-based estimation used in [3] is applied and extended for subpixel
movement: a translational movement of the object during an MRI scan occurs as
a circular shift of the object in the image domain. Let X ∈ R

m,n be an arbitrary
discrete image. A circular shift in one image dimension by b = n + d, n ∈ N,
d ∈ (0, 1] with linear interpolation between adjacent pixels can be formulated
using convolution matrices of the form

Cd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− d d 0 0 · · · 0

0 1− d d 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 1− d d 0

0 · · · · · · 0 1− d d

d 0 · · · · · · 0 1− d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

A two dimensional positive image shift Sb [X] with b = (by, bx) is calculated as

Sb [X] = CdyCny

1 X
(
Cnx

1

)T

CT
dx (2)

where nx, ny ∈ N denote the numbers of full pixel shifts in both directions
and dx, dy denote subpixel shifts (upper indices x, y denote directions). Due to
circularity, negative shifts are realized as large positive shifts.

2.1 Recording of k-space

In MR imaging, the k-space K ∈ R
m,n is recorded. More exactly, one line of

the k-space denoted by K (ky, ·), ky = 1, ...,m is generated at one measurement
read-out. Assuming that the movement during one measurement is constant due
to short recording time, one line of the recorded k-space K̂ gained from a shifted
image Sbky

[X] can be modeled as

K̂(ky, ·) = eTkyFySbky [X]Fx (3)

by applying the Fourier transform matrices Fy,Fx in x- and y-direction, respec-
tively and selecting one line with the unit vector eky . Let F [X] be an operator
which applies the Fourier transform to X in the way F [X] = FyXFx. Then,
the whole k-Space is gained as

K̂ = FB [X] =
[
eTkyF [Sbky [X]]

]m
ky=1

with B = [byky , b
x
ky ]

m

ky=1
(4)

A further reformulation step uses the property that the multiplication of two
convolution matrices stays a convolution matrix. Also, FC = DF , CTF = FD
holds for a convolution matrix C and a corresponding D = FCFH with F being
a one-dimensional Fourier matrix and D a diagonal matrix. Now, (4) yields

K̂ = FB [X] =
[
eTkyDky [F [X]]

]m
ky=1

=: QB [F [X]] (5)
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2.2 Reconstruction algorithm

It is assumed that an MR image without motion artifacts has the highest sparsity
compared to images gained from the same but moved object [3]. This assumption
is founded in MRI artifacts being shifted ghost replications of the object. Using
the wavelet transform as sparsifying transform, the problem is formulated similar
to [4] as

argmin
X,B

∥∥∥K̂ −QB [F [X]]
∥∥∥
F

subject to ‖WX‖1 ≤ c, B ∈ DB (6)

The sparsifying constant c > 0 has to be determined experimently in the later
given algorithm with a few propositions [4]. The space DB defines motion con-
straints. For each point in one k-space line, the same translational motion should
be estimated and also subpixel motion is permitted as advantage to [3].

The iterative motion estimation is divided into three steps [3]. At first, a
sparse representation X̃ of X̂ = F−1[K̂] is found. Secondly, the motion between
X̃ and X̂ is calculated. At the third step, the estimated motion is used to find
a better K̃ as approximation of K̂ to reconstruct the corresponding new X̃ with
which the algorithm is started again.

3 Results

The presented algorithm was tested on the Shepp-Logan phantom and human
brain images [5]. As different sizes of the images were tested with similar results,
representatives of 256×256 pixels for the Shepp-Logan phantom and of 217×181
pixels for the brain images were chosen (Fig. 1).

Starting from the assumptions B̃ = 0 and K̃ = K̂, the subproblem

X̃ = argmin
X

∥∥∥K̃ −QB̃ [F [X]]
∥∥∥
F

subject to ‖WX‖1 ≤ c (7)

is solved by an algorithm proposed in [3], which keeps the largest entries in

WF−1
[
K̃
]
, so that

∥∥∥WF−1
[
K̃
]∥∥∥

1
≤ c, and sets all other entries to zero (W

denotes the wavelet transform). This step solves the subproblem

B̃ = argmin
B

∥∥∥K̃ −QB

[
F
[
X̃
]]∥∥∥

F
subject to B ∈ DB (8)

Fig. 1. Shepp-Logan phantom (left) and
human brain image (right).
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As the properties of the Fourier transform deliver, the relation of the k-space
K ∈ R

m,n of an unmoved object and K̂ is found in the phase and written as

K̂ (ky, kx) = exp

(
−i2π

(
ky

m
byky +

kx

n
bxky

))
K (ky, kx) (9)

as explained in [4]. This property is used for motion estimation based on [2]. For
each k-space line, the motion is calculated separately between FX̃ as motion
corrected k-space approximation and K̃. As derived in [2], the motion in x-
direction by bxky can be calculated as index of the maximal cross-correlation

of FX̃(ky, ·) and K̃(ky, ·). To extend this for subpixel motion, a parabola is
generated with the correlation maximum and its both neighbors. The index of
the parabola maximum approximates the shift bxky

. The shift byky
is calculated

from the phase of the maximal correlation [2].
To update K̃ with the estimated B̃ in order to find a better approximation

for the motion free k-space, the shift operation has to be revoked. Starting with
the shifts bx in x-direction and (3), the following recursion is derived

K̂ (ky, ·) = ekyFyX̂Fx (10)

⇔ K̂
(
ky, ·Fx−1

)
= ekyFyCdyCny

1 X(Cnx

1 )TCT
dx (11)

⇔ K̂ (ky, ·)Fx−1

CT
−dx+1

(
Cnx+1

0

)T

︸ ︷︷ ︸
K̂y

= ekyFyCdyCny

1 X (12)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Moved Shepp-Logan phantom with maximal motion of (a): 2, (b): 5, (c),(d):
8 pixels in all k-space lines. Related reconstructed images gained by the presented
algorithm (e)-(g) and gained by reconstruction algorithm from [3] (h).
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Applying b̃x with (12) to the current approximation K̃ delivers an estimate K̃y

that is motion free in x-direction. With (9) follows

K̂y (k
y, ·) = exp

(
−i2π

ky

m
byky

)
Ky (k

y, ·) (13)

and the recursion is given by

exp

(
i2π

ky

m
byky

)
K̂y (k

y, ·) = Ky (k
y, ·) (14)

The full k-space is K = FFy−1

Ky. Applying b̃y in this way to K̃y results in a

new estimation for K̃, which is used as starting point for the next iteration.
The algorithm stops if no significant motion higher than a threshold (here

selected as 0.1 pixels) is estimated anymore.
As the repeated application of the convolution matrix in the x-directional

reconstruction could constitute a low pass filtering a global motion variable
G ∈ R

m,2 is defined to avoid blurring. It starts at G = 0 and B̃ is added
in each iteration. The final estimation K̃ is generated by applying G in an extra
reconstruction step to K̂ at the algorithm end.

Randomly chosen k-space lines were calculated directly from moved images of
the object. The motion was simulated in the image domain by a circularly shift
of up to 8 pixels independently in both directions. This simulation is similar to
the random k-space line recording order in MRI. In some simulations, only half

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Moved brain image with maximal motion of (a): 2, (b)-(d): 5 pixels in all
((a),(c),(d)), half (b) of the k-space lines. Related reconstructed images gained by the
presented algorithm (e)-(g) and gained by reconstruction algorithm from [3] (h).
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of the k-space lines were chosen randomly and calculated from shifted images,
the remaining ones were calculated from the original. The images gained from
the inverse Fourier transform of so produced k-spaces are shown in the upper
lines of Figs. 2 and 3.

The sparsifying step was tested with different wavelets (Daubechies and Sym-
lets), and due to its good results, the Haar wavelet was selected. For the calcula-
tion of the sparsifying constant, a variable a ∈ R

+ was chosen with c = a ‖WX‖1.
For the test environment, a ∈ [0.4, 0.6] turned out to be suitable.

The results gained by reconstruction with the proposed blind motion com-
pensation are shown in Fig. 2 (e)-(g), 3 (e)-(g). Even for large motion shifts, an
excellent reconstruction of image details is achieved. Image structures that were
not even noticeable before get revealed. Only a small amount of noise remains.
As reference, reconstruction results gained by [3] are shown in 2 (h), 3 (h). With
under 30 seconds, the enhanced algorithm is much faster than [3] on a similar
computer. In addition to motion interpolation via convolution matrices, the ap-
proach was tested for a cubic translational motion interpolation in the image
domain, for which the same quality of results was achieved.

4 Discussion

The proposed approach offers a promising and fast MRI motion correction with
subpixel accuracy without collecting additional data. MRI reconstruction gets
more stable. For a clinician, a diagnostic of in distorted images not noticeable
structures gets possible. In future works, the aim is to extend the algorithm to
more general non-rigid motion. New methods for motion estimation need to be
tested, and an adaption rule for the sparsifying constant has to be found. A
noise reduction step could be inserted to erase remaining small artifacts.
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