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Abstract—In room impulse response (RIR) equalization and
reshaping, one of the difficulties is the spatial robustness, because
RIRs are very sensitive to the movements of both the signal source
and the receiver. For example, the reshaping filter designed for
one pair of loudspeaker/receiver or source/microphone positions
will be ineffective for another pair. In this paper, we concentrate
on loudspreaker/receiver pairs and propose a novel approach in
which we use multiple prefilters to reshape simultaneously the
RIR samples in a given area of interest (listening area). According
to the RIR sampling principle, we prove statistically that the
listening area will be reshaped if only the RIR samples in this
area are reshaped. In simulations, we show that the proposed
approach is valid.

I. INTRODUCTION

Room impulse response equalization and reshaping in a
loudspeaker/receiver setting aims to provide a listening-room
compensation (LRC) by pre-processing loudspeaker signals in
a suitable way. It helps to improve the speech intelligibility
in reverberant rooms and enables new applications in audio-
visual communications and virtual acoustics. Similarly, for
improving the quality of far-field microphone recordings, a
post-filtering stage may be introduced for the received signals.
Both problems are mathematically equivalent, and for the sake
of conciseness, we describe our method for the LRC problem.

LRC compensates the channel so that the received signals
are perceived without reverberation. For a scenario where
the loudspeaker and the receiver are fixed to their positions,
several LRC approaches have been proposed [1], [2], [3], [4],
[5], [6]. The classical approaches in [1], [2], [3] try to equalize
the acoustic channel as best as possible. More recent methods
[4], [5], [6], [7] try to shorten or reshape the channel response,
which leave more degrees of freedom in the filter design and
promises better echo suppression. However, whatever method
is used for the filter design, if the loudspeaker or the receiver
move around in the neighborhood of their supposed positions,
or if there are moving objects in the room, the RIR will be
changing with time, which will lead to a degradation of the
LRC performance.

For a given LRC system, if the performance is not affected
by changes of the environment or by movements of the
loudspeaker or receiver, the LRC system is spatially robust,
otherwise, it is not spatially robust. If only one loudspeaker
is used for source-signal playback, it is impossible to keep
the reshaping system spatially robust within a given area in
a room, because the RIR is very sensitive to the position of

the loudspeaker and/or receiver. But in contrary, if multiple
loudspeakers are used and sufficiently many RIR samples in
the listening area are equalized or reshaped, according to
the spatial sampling principle of RIR [8], it is theoretically
possible to control the RIRs in a given limited listening area.
The basic idea of the multiple loudspeaker reshaping approach
proposed in this paper is that if samples of RIRs taken in the
listening area are reshaped, so as to cancel the reverberation
effects, and if these samples are homogeneously distributed
and are dense enough in the listening area, then the RIR of an
unsampled point in the listening area will be reshaped as well,
so the whole listening area is reshaped. When receivers move
in this listening area, there will be no reverberation heard.

II. SPATIAL RIR INTERPOLATION

Let us denote the RIR from one point PL(xL, yL, zL)
to another point PM (xM , yM , zM ) in a listening room by
cPL,PM

(t), where PL(xL, yL, zL) is the position of the loud-
speaker and PM (xM , yM , zM ) is the position of the micro-
phone or receiver. The RIR is not only a function of time but
also a function of the coordinates of loudspeaker/microphone
positions. Clearly, the time-domain sampling rate ft.s. is equal
to or higher than two times the highest frequency f0 in the
signal. From the point of view of wave equation, for a given
position of the loudspeaker, the impulse response cPL,PM

(t)
is a bandlimited spatial function for any time t. If cPL,PM

(t)
is bandlimited in the time domain to f0, then the spatial
frequency is limited to f0/v, where v is the speed of sound.
So the space-domain sampling rate fs.s. of the RIR is [8]:

fs.s. ≥ 2f0/v. (1)

In general, we use

fs.s. ≥ ft.s./v. (2)

We can do the space-domain sampling by either moving a
microphone from place to place in the listening area while
keeping the loudspeaker fixed outside the listening area or
vice versa. In a room, the listening area is quite limited
compared with the entire room space, so for the purpose of
RIR reshaping, we just focus on the listening area.

Denoting the discretized RIRs by cQL,QM
(t), where

QL(i, j, k) represents the position of a loudspeaker and
QM (l,m, n) is the position of a microphone in the listening
area, for each loudspeaker position, we sample the RIR in



the listening area. If the space-sampling condition is fully
satisfied, then for any point PM (x, y, z) in the listening area,
the RIR caused by the loudspeaker at position QL(i, j, k) can
be reconstructed through interpolation:

cQL(i,j,k),PM (x,y,z)(t) =∑
l,m,n

cQL(i,j,k),QM (l,m,n)(t)φ(x, y, z, l,m, n), (3)

where the interpolating function is φ(x, y, z, l,m, n) ≡ φ0(x−
lΔx, y −mΔy, z − nΔz) for convenience; Δx, Δy and Δz
are the spatial sampling periods in the three spatial directions;
φ0(x, y, z) is the interpolation function, which is independent
of the loudspeaker positions. For example, it is well known
that possible interpolating functions are the so-called sampling
functions given by φ0(x) = sin(πx/Δx)

πx/Δx and φ0(x, y) =
sin(πx/Δx)

πx/Δx
sin(πy/Δy)

πy/Δy for one- and two-dimensional spaces,
respectively, and

φ0(x, y, z) =
sin(πx/Δx)

πx/Δx

sin(πy/Δy)

πy/Δy

sin(πz/Δz)

πz/Δz

for the three-dimensional case. The frequency supporting
domain is accordingly a line ([−fs.s./2, fs.s./2]), a square
([−fs.s./2, fs.s./2])

2, and a cubic ([−fs.s./2, fs.s./2])
3, re-

spectively.
For two- and three-dimensional space, the orthogonal sam-

pling meshes are not optimal. Regular triangle for 2D space
and the so-called “body-centered cubic” for 3D space are
optimal [9].

Let the prefilter of loudspeaker QL(i, j, k) be hijk(t), then
the reshaped impulse response at PM (x, y, z) in the listening
area is as follows:

gPM (x,y,z)(t) =
∑
i,j,k

hijk(t) ∗ cQL(i,j,k),PM (x,y,z)(t)

(4)

=
∑
l,m,n

φ(x, y, z, l,m, n)gQM (l,m,n)(t),

where gQM (l,m,n)(t) =
∑

i,j,k hijk(t) ∗ cQL(i,j,k)QM (l,m,n)(t)
is the reshaped RIR of the sampling point QM (l,m, n) in the
listening area; ‘∗’ is the convolution operator.

For a good RIR reshaping, as described in [10][6], the
attenuation of the reshaped RIR should be limited under an
upper bound which is defined by the average masking window
that is derived from the auditory masking effect, i.e., this
upper-bound decays -10 dB at 4 ms after the direct impulse
and then it decays exponentially to -70 dB at 200 ms [11].
We define this upper bound as g0(t). In addition, for the
investigation of spatial robustness of RIR reshaping, the spatial
characteristics of RIRs must be taken into account, so the
reshaped RIR should satisfy the following hypotheses: For a
given time instant t, gQM (l,m,n)(t) is a spatially stationary
field and |gQM (l,m,n)(t)| is limited in the following ways:

• E[gQM (l,m,n)(t)] = const(t),
• E[gQM (l,m,n)(t)gQM (i,j,k)(t)] = rg(t, l−i,m−j, n−k),
• |gQM (l,m,n)(t)| ≤ |g0(t)| for t > 4 ms,

where E[.] is the spatial ensemble average operator. The third
hypothesis implies that rg(t, 0, 0, 0) = E[g2QM (l,m,n)(t)] ≤
E[g20(t)] for t > 4 ms.

Let us look at the statistical properties of the reshaped
RIR of any given point in the listening area. If x = lΔx,
y = mΔy, z = nΔz, then gPM (x,y,z)(t) = gQM (l,m,n)(t).
If x �= lΔx, y �= mΔy, z �= nΔz, then gPM (x,y,z)(t) is the
linear combination of gQM (l,m,n)(t) shown in (4). The spatial
ensemble average of gPM (x,y,z)(t) is,

E[gPM (x,y,z)(t)] =
∑
l,m,n

φ(x, y, z, l,m, n)E[gQM (l,m,n)(t)]

= const(t)
∑
l,m,n

φ(x, y, z, l,m, n)
(5)

for t > 4 ms.
Let us consider the average energy of a RIR tap for any

given point in the listening area, we get,

E[g2QM (x,y,z)(t)] =

∞∑
kx,ky,kz=−∞

rg(t, kx, ky, kz)Ψ(x, y, z, kx, ky, kz),

(6)
where Ψ(x, y, z, kx, ky, kz) =

∑
l,m,n φ(x, y, z, l,m, n)×

φ(x, y, z, l + kx,m+ ky, n+ kz).
Using the properties of sampling function, it is easy to prove

that ∑
l,m,n

φ(x, y, z, l,m, n) = 1 (7)

and

Ψ(x, y, z, kx, ky, kz) =

{
1 kx, ky, kz = 0,
0 otherwise.

(8)

so we obtain

E[gPM (x,y,z)(t)] = const(t) (9)

and

E[g2PM (x,y,z)(t)] = rg(t, 0, 0, 0) ≤ E[g20(t)]. (10)

This means that for any given point PM (x, y, z) in the
listening area, the impulse response gPM (x,y,z)(t) will decay
statistically as fast as those sampling points’ reshaped impulse
responses on which the reshaping filters are designed, so we
can say that the listening area is reshaped.

III. ALGORITHM DEVELOPMENT

For the RIR reshaping, Ns loudspeakers and Nm micro-
phones are used. The microphones are used for the sampling
of RIR in this listening area and the loudspeakers are used
for playback of source signals. Let cij(n) denote the impulse
response from the jth loudspeaker to the ith microphone, and
let Lc be the length of cij(n). Moreover, let hk(n) denote the
impulse response of the kth prefilter with length Lh, then the
ith global impulse response of this prefilter-loudspeaker-room
system is as follows, where we have subsumed the loudspeaker
responses as a part of the room impulse responses:

gi(n) =

Ns∑
k=1

hk(n) ∗ cik(n) =
Ns∑
k=1

Cikhk (11)



with Cik being an Lg-by-Lh convolution matrix made up of
sequence cik(n). With ‘global’ we mean that it is the response
from the original source over the Ns loudspeakers to the ith
microphone position. The length of gi(n) is Lg = Lc+Lh−1.
Our aim is to design prefilters which make the global impulse
responses gi(n) not only attenuate faster than the impulse
response of the room but also allow them to satisfy certain
psychoacoustic conditions so that there will be no audible
echoes. For this, we define an unwanted part of the reshaped
RIRs as

gui(n) = wui(n)gi(n), (12)

where i = 1, 2, . . . , Nm, and wui(n) is a suitable window
function (details will be given in Section IV). Other than in
[10], the wanted part of the impulse response is not explicitly
specified.

We exploit the p-norm for defining the objective function.
The corresponding optimization problem is given by

MINh : f(h) = log (‖gu‖p)

= log

⎛
⎜⎝
⎛
⎝Nm∑

i=1

Lg−1∑
k=0

|gui(k)|p
⎞
⎠

1
p

⎞
⎟⎠ (13)

where h = [h1,h2, . . . ,hNs
] and gu =

[gT
u1,g

T
u2, . . . ,g

T
uNm

]T. For simplicity, p is usually set
to be an even integer, so the problem is simplified as follows,

MINh : f(h) =
1

p
log (φfu(h)) , (14)

where φfu(h) =
∑Nm

i=1

∑Lg−1
k=0 gpui(k). All of the gui(n)’s are

dealt with as a whole, so all of the sampled RIRs will be
reshaped simultaneously.

From (14), the steepest descent learning rule reads

hl+1 = hl − μp−1φ−1
fu

(hl)∇hφfu(h
l), (15)

where

∇hφfu(h) =

[
Nm∑
k=1

CT
k1bk,

Nm∑
k=1

CT
k2bk, ...,

Nm∑
k=1

CT
kNs

bk

]
(16)

and
bk(n) = wuk(n)g

p−1
uk (n). (17)

The fast Fourier transform (FFT) can be exploited for
the calculation of CT

kibk, where k = 1, 2, ..., Nm and i =
1, 2, ..., Ns, so the algorithm (15) is very computationally
efficient [10].

IV. SIMULATIONS

Simulations were performed for a room of dimensions 5 m×
4 m× 2.5 m, using the method in [12]. The simulated room
impulse responses were of Lc = 2000 taps at a sampling
frequency of ft.s. = 16kHz. 13 loudspeakers were used to
playback source signals, and 57 microphones were considered
to sample the RIRs in a limited listening area of dimensions
2.0 cm× 8.0 cm× 8.0 cm. For the loudspeakers array, six of
the 13 loudspeakers were uniformly distributed on a circle of a

40 cm diameter, one was located at the center of this circle, the
last 6 loudspeakers were located at the center of the equilateral
triangles which are defined by the 6 loudspeakers on the circle
and the centered loudspeaker.

We define the unwanted part’s window function of the
global RIR as described in [10]. For the kth microphone,

wuk = [0, 0, ..., 0︸ ︷︷ ︸
N1k+N2k

,wT
0k︸︷︷︸

N3k

]T, (18)

where N1k = t0kfs, N2k = 0.004fs, and N3k = Lg −
N1k − N2k with fs being the sampling frequency and t0k
being the minimal time taken by the direct sound from the
Ns loudspeakers to the kth microphone. The window w0k is
defined as

w0k(n) = 10
3

log(N0k/(N1k+N2k))
log( n

N1k+N2k
)+0.5 (19)

with N0k = (0.2 + t0k)fs and time index n ranging from
N1k+N2k+1 to Lg −1. The reason for defining the window
wu(n) in this form is that we can take 1

wu(n)
as the average

masking limit. If the RIR or reshaped RIR exceed this limit,
it implies that audible reverberation exists. For an accurate
quantitative description, we define the following parameter:

RQ =

∑Lg−1
n=N0

g2EM(n)∑Lg−1
n=N0

g2(n)
(20)

as the reverberation quantization (RQ) parameter, where

gEM(n) =

{ |g(n)| − 1
wu(n)

for |g(n)| > 1
wu(n)

,

0 otherwise.
(21)

N0 in (20) corresponds to the sample which is 4 ms later then
the direct impulse of g(n). RQ is the power ratio between the
exceeding part of g(n) over the masking limit and g(n) itself.
If the RIR is completely reshaped, then RQ = 0.

For a given listening area, it is more convenient to use the
logarithmic average of RQs of the N randomly distributed
points in this area, we call this logRQ:

logRQ = −10 log

(
1

N

N∑
i=1

RQi

)
. (22)

The spatially sampled listening area with a sampling period
of 2.0 cm is presented in Fig. 1, it is the so-called ‘body-
centered cubic’ mesh. The listening area is of dimension 8cm×
8cm × 2cm. An example of an unreshaped RIR is given in
Fig. 2(a); the corresponding averaged global RIR of 30 random
points in the listening area is shown in Fig. 2(b).

For the example mentioned above, the reshaping filters
have a length of Lh = 3000. The logRQ’s before and after
reshaping are listed in Table I. Before reshaping, the logRQ of
the listening area is about 13.86 dB, but after the reshaping,
the logRQ is 30.32. The exceeding energy over the masking
limit is effectively reduced. Informal listening tests showed
that the reverberation is effectively suppressed.
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Fig. 1. Spatial sampling: the 57 microphone array (black dots) for spatial
sampling of the listening area and the 30 random positions of microphone
(circles) for performance evaluation. The spatial sampling period is 2 cm.

TABLE I
THE LOGRQ BEFORE/AFTER RESHAPING.

Spatial sampling period 2.0 cm
logRQ, before reshaping 13.86 dB
logRQ, after reshaping 30.32 dB

V. CONCLUSIONS

The robustness of room impulse response reshaping is
practically important for a good LRC system. In this paper
we propose to sample the sound field of a room in the
listening area to get the spatio-temporal RIRs for the design
of reshaping filters. In addition, the p-norm optimization
approach is exploited. Simulations show that this approach is
encouraging. Real measurements will be done in near future.
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