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Abstract
Vocal tract length normalization (VTLN) is commonly applied
utterance-wise with a warping function that makes the assump-
tion of a linear dependence between the vocal tract length and
the location of the formants. In this work we propose a data-
driven method for enhancing the performance of systems that
already use standard VTLN. The method is based on elastic reg-
istration to estimate optimal non-parametric transformations to
further reduce inter-speaker variabilities. Results show that the
proposed method can increase the performance of monophone
systems such that it reaches that of a triphone system.
Index Terms: automatic speech recognition, vocal tract length
normalization, elastic registration

1. Introduction
Speaker-normalization and -adaptation methods are com-
monly used in speaker-independent automatic speech recogni-
tion (ASR) systems to handle inter-speaker variability. While
“speaker-adaptation” usually refers to an adaptation of the
acoustic model parameters with a maximum-likelihood lin-
ear regression (MLLR) approach [1], the term “speaker-
normalization” is mostly used in the context of vocal tract
length normalization (VTLN) methods [2], which try to com-
pensate for the effects of different vocal tract lengths (VTL)
on the feature extraction stage. In it’s standard way, this com-
pensation is working on the whole utterance by either warp-
ing the frequency centers of the used filter bank or by warping
the frequency axis of the output of the filter bank. Assuming
a lossless, uniform tube model of length l, the resonance fre-
quencies Fi occur at Fi = (2i − 1) · c/(4l), i = 1, 2, 3, . . . ,
where c is the speed of sound. This linear scaling of the reso-
nances for different tube lengths is the basis for the often used
piecewise-linear warping function as described, for example,
in [3]. Different types of other warping functions were ana-
lyzed [4], but did not show any significant advances with respect
to accuracy compared to piecewise-linear warping.

In this work we propose a method that accounts for two
additional factors that are not or only roughly accounted for in
the commonly used VTLN approach: Usually, the whole utter-
ance of a single speaker is warped with only a single warping
factor. While this approach mitigates the average effect of dif-
ferent VTLs on a per-speaker basis, it does not consider the
fact that the VTL of a single speaker changes when produc-
ing phonemes where, for example, the lips are lengthened or
the larynx is lowered [5]. There are works that follow the idea
of using more than one warping parameter for normalizing the
time-frequency (TF) representation of an utterance of a single
speaker: [6] proposed a region-based VTLN approach where a
parameter for a piecewise-linear warping function is estimated
for up to five phoneme groups during decoding. A method for a
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Figure 1: Computation of VTL normalized MFCC vectors (a) in
its common form denoted as Y α, (b) with the proposed en-
hancement denoted as Y u.

frame-wise warping parameter estimation was proposed by [7],
where the Viterbi search space is augmented with a search for
an optimal warping parameter and the corresponding decoder is
referred to as “MATE decoder”. Both methods use a piecewise-
linear warping function.

In this work we present a data-driven method for refin-
ing the TF representation as output of the commonly used
one-parameter VTLN approach. Our proposed method makes
use of elastic registration with specific constraints for the task
of VTLN for ASR. The resulting warping functions are non-
parametric and allow for a high degree of freedom. The next
section describes the idea of the proposed method and gives
some details about its implementation. Section 3 explains the
experiments and analyzes the method with respect to the result-
ing ASR performance. The paper is concluded in Section 4.

2. VTLN and Elastic Registration
In this work we use mel frequency cepstral coeffi-
cients (MFCC). The procedure for the computation of
MFCC vectors with an integrated (optional) warping of the
frequency axis is illustrated in Figure 1. However, the proposed
method can be used with any feature type with an intermediate
spectral representation. An often used implementation of
VTLN follows the procedures for speaker-adaptive train-
ing (SAT) and a two-pass decoding strategy as described in [8].
The method proposed in this work can be regarded as an
additional feature enhancement step to standard VTLN.



2.1. Standard Vocal Tract Length Normalization

In this work, we consider a set of global warping factors α =
{−0.88,−0.9, . . . , 1.12}, where we refer to αN = 1 as the
“neutral warping factor” in the following. The SAT procedure
with VTLN according to [8] can be summarized as follows:
First, let r = 1, . . . , R be utterance indices. Using the non-
normalized observations Yr an acoustic model λ with single
Gaussians per state is estimated,

λ = arg max
λ̂

R∏
r=1

p
(
Yr |Wr; λ̂

)
. (1)

Second, for each utterance the warping factor α(r) is de-
termined with the model λ and the ground-truth transcrip-
tionsW (r) in a maximum likelihood sense,

αr = arg max
α

p(Y α
r |Wr; λ), r = 1, . . . , R. (2)

As third step, a VTL normalized acoustic model λ′ is estimated
using the normalized observations Y αr

r for each utterance r,

λ′ = arg max
λ̂

R∏
r=1

p
(
Y αr
r |Wr; λ̂

)
. (3)

For the recognition of a given observation sequence Y with
the SAT acoustic model λ′, a suboptimal two-pass strategy [8]
can be applied as follows: A first decoding pass with non-
normalized observations Y and acoustic model λ yields a hy-
pothesized transcription W̃ ,

W̃ = arg max
W

{P (W ) · p (Y |W ; λ)}. (4)

Given the normalized model λ′ and the hypothesis W̃ , a warp-
ing factor α̃ is selected that yields the highest likelihood,

α̃ = arg max
α

p
(
Y α | W̃ ; λ′

)
. (5)

A second decoding pass with normalized observations Y α̃ and
normalized model λ′ yields the final transcription,

arg max
W

{
P (W ) · p

(
Y α̃ |W ; λ′

)}
. (6)

2.2. Elastic Vocal Tract Length Normalization

The idea of the VTLN approach that normalizes the frequency
axis of the spectrograms as described above can be seen as
trying to deform the magnitude spectrum such that the de-
formed spectrum is more similar to a corresponding spectrum
that would have been generated by a speaker associated with
a neutral warping factor. Ideally, the deformation is context-
dependent and has a high degree of freedom, which allows for
the modeling of a wide range of spectral effects due to different
VTLs.

Let us assume we have filter bank outputs Xα that have
been normalized with the VTLN approach as summarized in
Section 2.1 and let g = (g1, g2, . . . , gG) refer to the indices of
utterances associated with the neutral warping parameter αN .
Furthermore, let Λ be a Gaussian mixture model (GMM) based
acoustic model whose parameters have been trained on the nor-
malized outputs Xα that are associated with the neutral warp-
ing parameter αN ,

Λ = arg max
Λ̂

G∏
k=1

p
(
XαN
gk |Wgk ; Λ̂

)
. (7)

Due to the GMM (here with M Gaussians) the probability
density function (PDF) modeled by a single state j of an acous-
tic model is given by

bj(xt) =

M∑
m=1

c(jm)N
(
xt; µ

(jm), Σ(jm)
)
, (8)

where xt is a single observation vector, c(jm) is a weighting
coefficient, and N ( · ; µ, Σ) is a multivariate Gaussian PDF
with mean µ and covariance Σ,

N (x; µ, Σ) =
1√

(2π)n |Σ|
e−

1
2

(x−µ)TΣ−1(x−µ). (9)

Obviously, the likelihood bj(xt) in Eq. (8) can be maximized
with

x(j) = arg max
x̂t

bj(x̂t) =

M∑
m=1

c(jm)µ(jm), (10)

and it can be seen that the maximum can be determined
if the state j is known. Now, let Sr(X,λ′,W ) =
(s1, s2, . . . , sT ) denote the state sequence of utterance r that
is estimated with forced-alignment based on an observation se-
quenceX =

[
x1 x2 . . . xT

]
, an acoustic model λ′, and

a given transcription W . The acoustic likelihood forX and Sr
given Λ is

p(X, Sr |Λ) =

T∏
t=1

bst(xt). (11)

Eq. (11) would be maximized with

X∗ =
[
x∗1 x∗2 . . . x∗T

]
where x∗t = x(st). (12)

Figure 2(a) shows an exemplary filter bank output X of a
single utterance. Using a three-state left-to-right monophone
model λ′, a forced-alignment W was estimated, which yields
a state-sequence S(X,λ′,W ). The optimal observation se-
quenceX∗ according to Eq. (12) is shown in Figure 2(b).

We want to describe the spectral effects due to VTL changes
for each frame of a whole utterance. The key idea of the pro-
posed method in this work is to find a transformation such that
a transformed observation sequence is similar to its optimal ob-
servation sequence. This procedure is called “registration” and
is actively researched within the field of image processing. As is
described in more detail in the following, the objective function
to be optimized contains a term that is based on the linearized
elastic potential. Therefore, we refer to the proposed method as
“elastic VTLN”.

2.2.1. Elastic Registration

Details to the following introduction about the applied regis-
tration approach can be found in [9]. In general, the goal
of registration can be stated as follows: Given a reference
R and template T and a mapping R,T : R2 → R, we
want to find a displacement u : R2→R2, such that the trans-
formed template Tu := T (x− u(x)) is similar to R. For
the computation of Tu a linear interpolation scheme is used
in this work and the boundaries of T were extended with lin-
ear regression. The similarity is quantified with a distance
measure D[R,Tu] : R2→R. By introducing a regularization
term S[u] : R2 → R prior knowledge can be introduced and
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Figure 2: (a) original observation sequence X , (b) optimal ob-
servation sequenceX∗, (c) exemplary displacement field u.

the numerical solution becomes more stable. The constrained
optimization problem then reads

min
u
D [R,Tu] + νS [u] subject to u ∈M, (13)

where ν ∈ R+ is a regularization parameter, and M is a
set of admissible transformations. As distance measure D the
correlation-based distance measure [9] is used,

Dcorr[R,Tu] =

〈
R− µ(R)

σ(R)
,
Tu − µ(Tu)

σ(Tu)

〉
L2

, (14)

where µ(·) and σ(·) denote the mean and standard deviation,
respectively. The choice for the regularizer in this work can
be motivated, e.g., by considering the spectral effects of spa-
tially restricted VTL changes. By means of an articulatory
speech synthesis model it is shown in [5] that an elongation at
the lips, the larynx, or a mid segment yield a warping of reso-
nance frequencies that is not linear with frequency. In the two-
dimensional case the elastic regularizer Selast [9] can be seen as
a rubber foil that induces tension if deformed. For two dimen-
sions it is defined as

Selast[u] =
1

2

∫
Ω

2∑
d=1

ρ‖∇ud‖2 +(ρ+ κ)(divu)2 dx, (15)

where ρ, κ ∈ R+ are the so-called Navier-Lamé constants,
which control the elastic behavior of the deformation, ∇ de-
notes a gradient, and div the divergence operator.

For the optimization of Eq. (13) we use the first-optimize-
then-discretize approach. That means, a minimizer of the objec-
tive function is determined first that leads to a nonlinear system
of partial differential equations (PDE). Then, the PDE is dis-
cretized and solved with a fixed-point iteration scheme in this
work. There exist efficient algorithms for solving the occurring
linear system of equations in each iteration [9]. To constrain the
possible solutions with displacements along the subband axis,
the displacements that occur along the time axis are set to zero
in each iteration of the numerical solution while keeping the
displacements along the subband axis. In this work the Navier-
Lamé constants were set to ρ = 1 and κ = 0, which is a com-
mon choice [9]. As an example, a displacement field for the
reference and template signals shown in Figure 2 (b) and (a),
respectively, can be seen in Figure 2 (c). The displacements
along the subband axis for each component are clearly visible.
The chosen regularization parameter yields spatially restricted
and smooth displacements.

2.2.2. Using Elastic Registration for VTLN: Elastic VTLN

The standard VTLN approach can be used for SAT, as well as
for VTL normalization during recognition. By making use of
elastic VTLN, we propose procedures for both cases to enhance
the overall performance of the ASR system in the following.

Starting with a SAT acoustic model λ′, the following
method aims to further decrease the effects of inter-speaker-
variabilities that result in translations along the subband axis.
In a first step, an acoustic model Λ is trained only on utterances
that are associated with the neutral warping parameter (see Sec-
tion 2.2). With the ground-truth labels of the training data, a
maximum-likelihood (ML) state alignment is computed. For
each training observation sequenceXr , an optimal observation
sequence X∗r is generated and a displacement field ur is esti-
mated withX∗r being the reference andXr being the template,

ur = arg min
û

Dcorr
[
X∗r ,X

û
r

]
+ νSelast [û] . (16)

The application of the displacements for each utterance yields a
warped spectral representationXu

r . A subsequent computation
of cepstral-coefficient based features on the basis of the warped
representations (cf. Figure 1) yields the final observations Y ur .
These are used for a re-estimation of the acoustic model param-
eters, which leads to the final acoustic model λ′′,

λ′′ = arg max
λ̂

R∏
r=1

p
(
Y ur
r |Wr, λ̂

)
. (17)

Similar to the standard VTLN approach, the decoding of
features with elastic VTLN uses the hypothesis W̃ from a first
decoding pass for an ML state-alignment. The output of the
state-alignment is used to generate a hypothetically optimal ob-
servation sequence X̃∗ that, in turn, is used as reference for a
subsequent elastic registration. The resulting displacement u is
then used to compute a deformed spectral representation Xu.
The deformation spectral values are used for the extraction of
cepstral-coefficient based features Y u. A second decoding
pass yields the final transcription.

3. Experiments
The TIMIT corpus with its standard training and test sets (with-
out SA sentences) was used here. The training set consists
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Figure 3: Resulting accuracies using elastic VTLN for oracle
(solid) and hypothetical (dashed) transcriptions, as well as base-
line accuracies.

of 3696 utterances from 462 different speakers. The test set
consists of 1344 utterances from another 168 different speak-
ers. Following the standard procedure for TIMIT, the initial
phoneme set was folded to 48 phonemes. Three-state left-to-
right monophone models with up to 16 Gaussians and diagonal
covariance matrices together with bigram statistics were used.
For the computation of the recognition accuracy, the transcrip-
tions were further folded to 39 phonemes. We decided to use
monophone models in this work to decrease the computational
load, thus, making the analysis of the proposed elastic VTLN
method more feasible. The feature extraction follows the proce-
dure as depicted in Figure 1 and yields 39 dimensional MFCC
vectors. The baseline accuracy of the system without VTLN
is 68.4%, and 70.3% with standard VTLN. As additional base-
line, triphone modeling with rule-based state-clustering yields
an accuracy of 73.3% without VTLN, and 74.5% with standard
VTLN.

In a first step, an upper bound for the accuracy obtained
with elastic VTLN was determined. This was done by esti-
mating state alignments based on oracle transcriptions for both
the training as well as for the test utterances. Features were
computed with the resulting deformations as described in Sec-
tion 2.2.2 and recognitions experiments were conducted with
the monophone system. The accuracies for different choices
of the regularization weights ν are shown in Figure 3 as solid
line. The impact of a large regularization coefficient is clearly
visible: The larger the weight, the smaller are the resulting dis-
placements towards optimal spectral representations. An opti-
mal choice for ν w.r.t. accuracy is given by ν = 0.008. As is
described next, this holds for the use of both the oracle as well
as the hypothesized transcription.

The potential of elastic VTLN is clearly shown with the
accuracy reaching 91.7% with the oracle-transcription based
monophone system. However, in practice, a hypothesized tran-
scription from the first decoding pass has to be used for the nor-
malization. To see how elastic VTLN performs under practical
conditions, hypothesized transcriptions as output of the stan-
dard VTLN approach were used for the computation of the dis-
placement fields in a second experiment. The results are shown
in Figure 3 as dashed line. It can be seen that a large regulariza-
tion weight yields no performance improvements in comparison
to standard VTLN. However, when choosing ν = 0.008, the ac-
curacy of the monophone system can be increased by more than
four percentage points, reaching the accuracy of the triphone
system. At this point it is noteworthy, that the enhanced hy-

pothesis could be used for another elastic VTLN pass, which
should further increase the accuracy.

4. Conclusions and Outlook
We presented a method that we refer to as “elastic VTLN” for
enhancing the standard VTLN approach. The method is data-
driven and makes use of elastic registration with nonparametric
deformations as output. Using elastic VTLN, the results show
that it is possible to enhance the performance of a monophone
system such that it reaches that of a triphone system.

The choice of both the distance measure as well as the reg-
ularization method can have a considerable effect on the solu-
tion. It is shown in the experimental part that the choices for
this work yield promising results. However, additional exper-
iments will have to show if other measures or regularizers are
even more beneficial. Another common approach for registra-
tion methods is the introduction of an additional penalty term.
The objective function used within this work does not account
for energy preservation (w.r.t. the spectral values) during the
computation of the transformation. An appropriate penalty term
could take care for this. We assume that due to the normaliza-
tion during the subsequent feature extraction in this work, the
effect of not considering energy preservation is mitigated. Nev-
ertheless, a subtle analysis might provide further performance
improvements. Due to the small size of training and test data
provided by the TIMIT corpus, these results can only be seen
as preliminary ones and have to be verified on a larger corpus
with a more competitive acoustic modeling. A comparison of
elastic VTLN with regional VTLN and VTLN with the MATE
decoder is also part of future work.

A Matlab implementation of the registration method that
was used for the experiments of this work will be available at
http://www.isip.uni-luebeck.de/download.
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