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ABSTRACT

The purpose of room impulse response reshaping is to re-
duce reverberation and thus to improve the perceived qual-
ity of the received signal by prefiltering the source signal be-
fore it is played back with a loudspeaker. The optimization
of an infinity- and/or p-norm based objective function has
proven to be quite effective compared to least-squares meth-
ods. Multi-position approaches have been developed in or-
der to increase the robustness against small movements of the
listener. The drawback, however, of the multi-position ap-
proach is the great amount of measurements that need to be
done prior to equalizer design. A recent method considered
the system perturbations in the case of small spatial mismatch
and with arbitrary weighting for the reverberation tail. The
drawback of this approach is the computation effort required
to preprocess the data. In this paper we present a method to
significantly speed up this preprocessing step.

Index Terms— room impulse response, reshaping, ro-
bustness, optimization, p-norm.

1. INTRODUCTION

The task of listening room compensation (LRC) aims at neu-
tralizing the convolutional distortions that are added to an au-
dio signal by transmission in a closed room. A filter is placed
before the loudspeaker to preprocess the audio signal. The
goal is to reduce the influence of the room impulse response
(RIR) in order to obtain a signal that is hardly distinguishable
from the original signal by a human listener [1].

Early approaches computed the equalizer by minimizing
the difference between the global impulse response (GIR, that
is the convolution of the RIR and the equalizer) and a desired
target system in a least-squares sense [2].

A more relaxed requirement is to define arbitrary desired
shapes for the GIR. It has been shown in [3] that a shaping
rather than a shortening of the GIR is preferable in practice,
because by shaping the GIR the temporal masking effect of
the human auditory system can be exploited efficiently.

In [4] the least-squares measure has been generalized to a
p-norm based optimality criterion. It has been shown that by

adequately choosing the involved parameters, the optimiza-
tion process leads to an equalizer that distributes the perceiv-
able errors evenly across the GIR’s time coefficients. The ob-
jective function has been extended in [5] to explicitly control
the frequency response of the overall system.

Unfortunately, all of these approaches lack spatial robust-
ness. In case of small spatial mismatch (e.g. due to the lis-
tener moving his head slightly) the performance of the equal-
izer degrades greatly [6].

There are, in general, two approaches to improve spa-
tial robustness. In [7] the approach from [4] has been ex-
tended to achieve reshaping at multiple positions. If the spa-
tial sampling is dense enough, then the listener is allowed to
move in a small volume without perceiving a degraded per-
formance. This method has been extended by a frequency-
domain based regularization term to guarantee a flat overall
frequency response [8]. The second method is to explicitly
consider the system errors in the optimization problem [9].
In [8] a stochastic model for the system perturbations was
presented with an arbitrary weighting for the reverberant tail.
However, a large computation effort was needed to determine
required weighting matrices based on the RIRs.

In this paper we propose a method to significantly reduce
the time required to preprocess the RIRs.

This paper is organized as follows. In Section 2 we give a
review of the p-norm based design of reshaping filters and of
the frequency-domain based regularization term. In Section 3
we review the proposed model to capture the system perturba-
tions and derive the new objective function. Results are given
in Section 4. Finally, we give some conclusions in Section 5.

Notation: Lowercase boldface characters denote vectors,
while uppercase boldface characters denote matrices. The su-
perscript T denotes transposition. The asterisk ∗ denotes con-
volution. The operator diag {·} turns a vector into a diagonal
matrix, and ‖·‖p returns the `p-norm (short p-norm) of a vec-
tor. Furthermore, E {·} denotes the expectation operator.

2. ROOM IMPULSE RESPONSE RESHAPING

For the reshaping we use the method from [8], where we pro-
posed a comprehensive optimality criterion that captures both
the time- and the frequency-domain representations of the
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GIR. The approach was originally formulated for an arbitrary
number of microphones (i.e. listening positions) and loud-
speakers. However, in this paper we consider only one micro-
phone and, for the sake of simplicity, the equations are for-
mulated accordingly. Considering N loudspeakers, the GIR
of length Lg at the reference position is given by g(n) =∑N

`=1 h`(n) ∗ c`(n), where c`(n) is the RIR of length Lc

from loudspeaker ` to the listening position and h`(n) is the
prefilter of length Lh for the `-th loudspeaker. The reshaping
filters are designed by defining two window functions wd(n)
and wu(n) to determine the desired and the unwanted parts
of the GIR. The desired and the unwanted parts are given by
gd(n) = g(n)wd(n) and gu(n) = g(n)wu(n), respectively.

2.1. RIR Reshaping with p-Norm Optimization

The time-domain representation of the GIR is optimized by
solving the optimization problem given by

min
h

: f(h) = log

(
fu(h)

fd(h)

)
(1)

with

fd(h) = ‖gd‖pd
=

Lg−1∑
n=0

|gd(n)|pd

 1
pd

(2)

and fu(h) = ‖gu‖pu
. The target vector h =

[
hT
1 , . . . ,h

T
N

]T
is the concatenation of the prefilters for the N loudspeakers.
The optimization is carried out by applying a gradient-descent
procedure.

The advantage of (1) in comparison to a least-squares
measure is that by choosing appropriately large values for pd
and pu (usually chosen between 10 and 20), the error is dis-
tributed evenly across the time coefficients in the unwanted
part of the GIR.

For the weighting we use the window functions from [4]
that capture the temporal masking property of the human au-
ditory system.

2.2. Frequency Domain Based Regularization

It has been shown recently that one has to consider both the
time- and the frequency-domain representations of the GIRs
to achieve a good reshaping without degrading the perceived
quality due to high spectral peaks [5].

The regularization term proposed in [5] is given by

y(h) = ‖af‖pf
, (3)

where the vector af is made up by the discrete Fourier trans-
form of the GIR. The method has been generalized in [8] to
incorporate an arbitrary number of loudspeakers and micro-
phones.

3. ROBUST RESHAPING USING STATISTICAL
KNOWLEDGE

The problem of designing an equalizer for a reference posi-
tion and then moving the microphone away has been studied
by Radlović et al. [6]. In [8] we presented a method to incor-
porate statistical knowledge about the system perturbations in
the case of spatial mismatch into the optimization process. As
a novelty we allowed for an arbitrary weighting of the rever-
beration.

3.1. System Perturbations Caused by Spatial Mismatch

Let ω = 2πf denote the radial frequency and let C(ω), P (ω)
andH(ω) be the Fourier transforms of the RIR c(t), its pertur-
bation caused by microphone movement p(t), and the equal-
izer h(t), respectively. The frequency-dependent error due to
misplacement is then given as in [6] by

F (ω) = E
{
|[C(ω) + P (ω)]H(ω)− 1|2

}
. (4)

Assuming perfect equalization in the reference position
(i.e., H(ω) = 1/C(ω)) and being in the far field in reverber-
ant environments, the distance measure (as in [6]) reads

F (ω) =
E
{
|P (ω)|2

}
|C(ω)|2

= 2− 2
sin(ωD/v)

ωD/v
, (5)

where v is the speed of sound and D is the deviation of the
microphone from the reference location in meters. Solving
(5) for E

{
|P (ω)|2

}
yields

E
{
|P (ω)|2

}
= |C(ω)|2

(
2− 2

sin(ωD/v)

ωD/v

)
. (6)

Assuming a bandlimited input signal with a maximum
radial frequency ωc and fulfilling the sampling theorem, the
continuous-time signals and impulse responses can be re-
placed by their discrete-time equivalents (namely c(n), p(n)
and h(n)). With respect to (6), the autocorrelation sequence
for p(n) is given by

rpp(n) = rcc(n) ∗ f(n) , (7)

where rcc(n) = c(n) ∗ c(−n). The sequence f(n) is com-
puted by sampling F (ω) according to (5) at discrete frequen-
cies and applying the inverse discrete Fourier transform.

3.2. Weighting of the Reverberation

By using N loudspeakers for playback, the global impulse
response at the reference position is given by

g(n) =

N∑
`=1

c`(n) ∗ h`(n) . (8)

Outside the reference position the GIR is modeled by

g(n) =

N∑
`=1

[c`(n) + p`(n)] ∗ h`(n) , (9)



where p`(n) denotes the perturbations of the `-th channel
caused by displacement.

Assuming perfect equalization in the reference point, the
weighted error due to microphone movement is then given by

e(n) = w(n)

N∑
`=1

p`(n) ∗ h`(n) , (10)

where w(n) is a sequence of positive weights, usually chosen
as w(n) = wu(n).

With W = diag {w}, P` being the Toeplitz-structured
convolution matrix of size Lg × Lh made up by p`(n), and
h` being the vector made up by the sequence h`(n), the mean
squared error due to spatial movement is given by

O = E

{
N∑
`=1

‖WP`h`‖22

}
. (11)

Assuming the perturbations to be uncorrelated and H` be-
ing the convolution matrix made up by h`, (11) can be sim-
plified to O =

∑N
`=1O` with

O` = E
{
‖WP`h`‖22

}
= E

{
hT
` P

T
` W

TWP`h`

}
= E

{
pT
` H

T
` W

TWH`p`

}
.

(12)
By exploiting the properties of the trace of a matrix, namely
tr {AB} = tr {BA}, O` can be rewritten as

O` = E
{
tr
{
HT

` W
TWH`p`p

T
`

}}
= tr

{
HT

` W
TWH`R

(`)
pp

}
,

(13)

where R
(`)
pp = E

{
p`p

T
`

}
is the autocorrelation matrix for the

perturbation. For an impulse response c`(n) and an assumed
average displacement D, R(`)

pp can be set up as a Toeplitz ma-
trix from the sequence r(`)pp , which can be computed as stated
in (7).

For a tractable computation of the gradient we presented
an algorithm in [8] to construct N matrices M` so that

O` = hT
` M`h`. (14)

The algorithm from [8] is based on the Cholesky decompo-
sition of autocorrelation matrices of the dimension Lc × Lc

and requires the element-wise sum over Lc matrices of size
Lh × Lh. Usually, the lengths of the prefilters and the RIRs
are in the range of several thousand taps. Due to the size of
the matrices, the calculations are very time consuming and
computationally demanding. In the following we present an
optimized method for computation of the weighting matrices.

3.3. Optimized Preprocessing

Exploiting the special structure of the matrices W, R(`)
pp and

H` the optimality criterion (13) can be rewritten as

O` =

Lg−1∑
n=0

Lc−1∑
i=0,j=0

h`(n− j)h`(n− i) r(`)pp(i− j)w2(n) .

(15)

By setting (14) equal to (15), a rule can be found to calcu-
late the individual entries of the matrix M`. As M` is sym-
metric, only the upper right triangular part needs to be com-
puted, which is then copied to the lower left of the matrix.
The individual components [M`]p,q , 1 ≤ p, q ≤ Lh of the
matrix M` are given by

[M`]p,q =


p+Lc−2∑
n=q−1

w2(n) r
(`)
pp(q − p) , q ≥ p

[M`]q,p , else.
(16)

3.4. Extended Objective Function

With the different optimality criteria given in Sections 2.1, 2.2
and 3, the proposed optimization problem finally reads

min
h

: q(h) = f̃(h) + αy(h) s.t. hTh = 1, (17)

where

f̃(h) = log

(
f̃u(h)

fd(h)

)
. (18)

With the equations derived in Section 3, f̃u(h) is given by

f̃u(h) = fu(h) + β

(
N∑
`=1

hT
` M`h`

) 1
2

︸ ︷︷ ︸
f(P )(h)

, (19)

where M` is given in (16).
The learning rule reads

hl+1 = hl − µl
(
∇hf̃

(
hl
)
+ α∇hy

(
hl
))
, (20)

where µl is the adaptive positive step size in iteration l. The
side condition is fulfilled by renormalizing the target vector
hl+1 after every iteration l.

Finally, the gradient for f̃(h) is given by

∇hf̃(h) =
1

f̃u(h)
∇hf̃u(h)−

1

fd(h)
∇hfd(h) , (21)

where

∇hf̃u(h) = ∇hfu(h) + β∇hf
(P )(h) . (22)

For the derivation of the individual gradients ∇hfu(h),
∇hf

(P )(h),∇hfd(h), and ∇hy(h) we refer to [8].

4. RESULTS

For the experiments we used four loudspeakers for playback
in a typical office room. We measured four impulse responses
c`(n) of length Lc = 4000 taps with a sampling frequency
of fs = 16 kHz. The reshaping filters were designed with



Table 1. Average values for the nPRQ and SF measures be-
fore and after reshaping using the different algorithms. For
Alg. A the assumed spatial displacement was D = 2 cm.

Setup nPRQ [dB] SF

unreshaped 9.93 0.63
Alg. A, α = 40, β = 0 10.50 0.64
Alg. A, α = 1, β = 5 · 10−4 3.88 0.60
Alg. B, α = 10 1.23 0.70
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Fig. 1. Global impulse response in the case of small spatial
mismatch for the non-robust (β = 0, left plot) and the robust
design method (right plot). The dashed line is the average
temporal masking limit.

a length of Lh = 5000 taps. For all experiments we chose
pd = 20, pu = 10, and pf = 8. To quantify the amount of
dereverberation and spectral distortion, we utilize the nPRQ
[8] and the spectral flatness (SF) measures [10]. The nPRQ
measure captures the average overshoot of the time coeffi-
cients of an impulse response exceeding the average temporal
masking limit and being above −60 dB [8]. The SF mea-
sure equals one in the case of a flat frequency response and
degrades to zero with increasing distortions [10]. To investi-
gate the spatial robustness, we designed the reshaping filters
for the reference position and calculated the nPRQ and SF
measures for 40 more positions in the vicinity of the refer-
ence position. The results are given in a condensed form in
Table 1 (denoted as Alg. A) with an assumed displacement of
D = 2 cm. To compare the proposed method to the multipo-
sition approach (denoted as Alg. B) from [8], we measured
26 more RIRs in the vicinity of the reference position accord-
ing to the spatial sampling theorem for RIRs. The additional
design positions were disjoint to the 40 testing positions. A
direct comparison of a GIR in case of small spatial mismatch
for the non-robust (β = 0) and the robust method is given in
Fig. 1.

To compare the performance of the new algorithm to
the method presented in [8], some measures of the speedup
for different lengths of the prefilters and the RIRs were per-
formed. Both algorithms were implemented using MATLAB
and benchmarked on a single-core machine running at 3 GHz.
The absolute computation times to determine the weighting
matrix based on a single RIR and the speedup factors are
listed in Table 2, where A.1 denotes the algorithm from [8]
and the proposed algorithm is denoted by A.2. We expect a
further speedup by using a parallel implementation on multi
core systems or dedicated graphics hardware.

Table 2. Computation times in seconds on a single-core ma-
chine running at 3 GHz for the former algorithm from [8]
(A.1) and the proposed algorithm (A.2).

Lc Lh A.1 A.2 Speedup
1000 1000 926 s 4.3 s 215.3
2000 2000 14139 s 24.4 s 579.5
4000 5000 367112 s 226.3 s 1622.2

5. CONCLUSIONS
In this contribution we presented a method to significantly re-
duce the amount of time to compute spatially robust reshaping
filters for listening-room compensation. In comparison to the
former implementation, the amount of time needed to set up
the required matrices could be lowered by a factor of more
than 1600.
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