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Abstract—In this paper, we present a new compressed-sensing
(CS) setup together with a new scalable CS model, which allows
the tradeoff between system complexity (number of detectors)
and time (number of measurements). We describe the calibration
of the system with respect to model parameters and show the
reconstruction of compressed measurements according to the new
model, which are acquired with the proposed setup. The pro-
posed model and its parameter are evaluated with the established
measures, i.e., restricted isometry property and coherence. The
resulting consequences for usable sparsifying basis are derived on
this evaluation. With the proposed setup, it is possible to acquire
high-resolution images with a low-resolution camera.

Index Terms—Calibration, compressed sensing (CS), deblur-
ring, deconvolution, single-pixel camera, super resolution, wavelet.

I. INTRODUCTION

IN RECENT years, a theory named Compressive Sensing
(CS) has emerged, which overcomes the limitations that

Shannon’s theorem imposes on sampling systems. CS is mo-
tivated by the fact that most natural signals are sparse or at least
approximately sparse in a certain basis such as a wavelet or
Fourier basis. CS exploits the signal compressibility during the
sampling process by measuring a few informative signal parts
directly and therefore makes it possible to reduce the sampling
rate drastically.

Assume a signal vector x ∈ R
N has a K-sparse representa-

tion x = Ψc, for c ∈ {ξ ∈ R
N : ‖ξ‖0 ≤ K}, in representation

basis [ψn]N1 = Ψ. Sparsifying matrix Ψ̃ is thereby the inverse
of quadratic matrix Ψ. Sampling M projections of x leads to
the well-known CS model

y = [〈φm,x〉]1M + v = Φx + v = ΦΨc + v (1)

where Φ is the system sensing matrix as it represents the
behavior of the measurement system. Together with the
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representation matrix, they form the sampling matrix ΦΨ for
vector c, which is the K-sparse representation of x. Observa-
tion noise is taken into account by v. The CS theory tells us
that, in certain situations, there exists a unique solution to the
inverse problem of finding c given M < N measurements.

The concept of CS has been successfully applied to real-
world applications known as single-pixel cameras [1]–[3],
which have only one detector element instead of millions to
capture an image. This is useful in applications where either
due to cost or size (large) arrays of detectors are not practical.

The drawback of existing concepts is the limitation to one
detector. We propose a scalable model that allows detector
arrays of arbitrary size, with the single-pixel camera being
a special case of array-size one. This model allows for the
tradeoff between number of measurements (time) and system
complexity (number of detectors).

Using multiple detectors in the CS context is not new and
has been used in [4] to reconstruct a single source image
by assuming sparse representation of single image tiles using
overcomplete dictionaries. In [5], the authors used several
audio receivers to reconstruct a source signal. They assume the
measurements to be a shifted and filtered version of the original
signal. In [6], the authors present a general framework for
related but not identical signals supplied by several detectors.
They introduce a structured sparsity model and assume the
detector signals to be represented by such a model. In contrast
to other works, we propose a model and reconstruction method
that does not assume a shared sparse representation or structure
of the individual detector signals but a sparse representation of
the whole source signal. This is, for example, important in cases
where an image is sampled by multiple detectors, which only
cover small parts of the whole image.

The problem of multidetector compressed measurements,
where each detector has a different spatial intensity, has been
also proposed in [7] for the MRI context, where multiple coils
directly sample in Fourier space. In contrast to our work,
MRI measurements are performed in a transformed domain
but the coils have different spatial responsivities. Although our
model also describes different spatial responsivities, it also does
the sampling in a spatial domain, which is different to MRI
measurements.

In [8], the authors present a multidetector compressed mea-
surement model, which is essential to a parallel single-pixel
camera. Each of those cameras reconstructs a small part of the
full image. This approach is very similar to that presented in this
paper. However, one major difference is that our model does not
assume independence of the parallel single-pixel cameras.

0018-9456/$26.00 © 2011 IEEE



EDELER et al.: SUPER-RESOLUTION MODEL FOR A COMPRESSED-SENSING MEASUREMENT SETUP 1141

Fig. 1. Visualization of model (2). (a) High-resolution image x. (b) Random
weighting pattern diag[Fk]. (c) Weighted original image Fkx. (d) Projective
sampled image DFkx. (e) Blurred image HDFkx with sampling locations of
operator P marked with crosses. (f) Measurement result yk with Nx · Ny = 9
detectors.

Our model covers the acquisition of Nx · Ny different (but
possibly similar) linear mixtures of an original image

yk = PHDFkx + vk ∀k ∈ {1 . . . M} (2)

where x ∈ R
[NuNv×1] is the (lexicographically ordered) high-

resolution image, and yk ∈ R
[NxNy×1] is the kth measurement

of the mixtures. Matrix Fk is diagonal and contains the weights
for each element in x. In Fig. 1, this model is visualized. The
original image x [see Fig. 1(a)] is element wise multiplied by
pattern diag[Fk] [see Fig. 1(b)]. The result [see Fig. 1(c)] is
projected onto the detector array by operator D [see Fig. 1(d)],
blurred by convolution operator H [see Fig. 1(e)], and sampled
on a regular rectangular grid by operator P [see Fig. 1(e)]. The
result yk with Nx · Ny = 9 elements is shown in Fig. 1(e).

Reconstructing x from measurements yk with the prior
knowledge that x has a sparse representation c = Ψ̃x can be
stated as

x̂ = arg min
x

M∑
k=1

‖yk − PHDFkx‖2
2 s.t. ‖Ψ̃x‖0 = K

(3)

where K is the given sparsity. It is known from literature
that this problem is in principle combinatorial and NP hard to
solve [9]. However, under certain conditions [10], (3) can be
relaxed to

x̂ = arg min
x

‖Ψ̃x̂‖1 s.t.
M∑

k=1

‖yk − PHDFkx̂‖2
2 ≤ ε

(4)

where ε is the expected error because of measurement noise
or not exactly sparse signal x. The conditions under which (3)
and (4) yield the same result are noiseless measurement, exact
sparse representation (ε = 0), and certain quality criteria given
in Section IV.

Note that model (2) is equal to a single measurement of
model (1) if PHD = [1]1Nu·Nv

. In this case, our model de-
scribes a single detector (Nx = Ny = 1), and the proposed
reconstruction method is equal to the one proposed in [11].

Fig. 2. Schematic of test setup. A scene is projected by a lens on reference
plane Γ where a DMD lies. The DMD optically multiplies the projected scene
by a binary pattern by switching mirrors to the scene or to a black surface. The
multiplication result is then projected by a second lens onto image plane Π
where a low-resolution detector array is located. Using the CS theory, a high-
resolution image can be reconstructed with this setup.

In [12], the authors present a CS deblurring method, which
is similar to ours. The difference of our method is that we con-
sider geometric transformations (P,D). We also have control
over the inner product that is influenced by the element-wise
multiplication, represented by diagonal matrices Fk.

In [13], we presented the first research results of the proposed
system. In this paper, we have extended the reference list, the
theoretical, and the experimental sections of the conference
proceeding paper. Established quality measures are newly intro-
duced in Section IV, and we use them to show the performance
of our model with respect to the number of measurements and
to give a statement on good sparsifying basis for reconstruction.
The experiments are extended by simulations and reconstruc-
tions from real measurements.

This paper is structured as follows: We describe a real
measurement setup in Section II that fits to model (2), and in
Section III, we show how to calibrate the model parameters
to that setup. The quality of measurement systems that can be
described by our model is given in Section IV for different
model parameters. Measurements of the estimated parameters
are presented in Section V together with the application of
super-resolution reconstruction of simulated and real compres-
sive measurements.

II. MEASUREMENT SETUP

To evaluate model (2) in practice, we build up a test setup,
which is shown as a schematic in Fig. 2. The main components
of the setup are the digital mirror device (DMD) as the multi-
plication element to implement matrix Fk and an area camera
as the detector array. The observed scene is projected by a first
lens onto the DMD, which, in turn, is projected with a second
lens onto the detector array. The DMD consists of thousands of
switchable mirrors, which either direct the light from the scene
or from a black surface to the detector array and thus is able to
“multiply” the scene image by a pattern.

The center of each mirror on the DMD lies in the reference
plane Γ at location x′ = [u · Δγ,u, v · Δγ,v]T , with u ∈ {n ∈
N : n ≤ Nv} and v ∈ {n ∈ N : n ≤ Nu} as coordinates and
[Δγ,u × Δγ,v] being the dimension of each mirror. Therefore,
the resolution of the mirror array is [Nu × Nv].
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The detector array, which lies in image plane Π, captures the
images y of the mirrors on plane Γ. Each detector element is
centered at location x = [x · Δπ,x, y · Δπ,y]T , with x ∈ Ωx =
{n ∈ N : n ≤ Nx} and y ∈ Ωy = {n ∈ N : n ≤ Ny} as its co-
ordinates and [Δπ,x × Δπ,y] being the dimension of each de-
tector. The detector array has therefore a resolution of [NxNy]
detectors. The intensity signal of the detector array is then

I(x, y) ∝
Δh/2∫∫
Δh/2

h(τx, τy) · f(x − τx, y − τy)d τyd τx (5)

where function f(·, ·) : R
2 → R represents the light intensity

on image plane Π, h(·, ·) : R
2 → R is the continuous blurring

kernel, and Δh is its support in both dimensions. Note that
Δh ≥ {Δπ,x,Δπ,y}. By lexicographic ordering of function
I(·, ·) : (Ωx,Ωy) → R, it can be written as vector y.

III. SYSTEM CALIBRATION

Model (2) consists of unknown operators P, H, and D,
which are determined by calibration. Downsampling P and
projection D are determined by geometric calibration (GC),
and convolution operator H is then estimated.

A. GC

For GC, the geometric relation between detectors and mirrors
is determined. The center x′

i of the ith mirror in plane Γ is pro-
jected onto the image plane Π at location x. The relationship
between x′ and x is given by homography [14] T with

[
x
1

]
∝ T

[
x′

1

]
=

⎡
⎣ t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 1

⎤
⎦[

x′

1

]
. (6)

Geometric system calibration is therefore the task of finding
the eight unknowns in T. This is commonly performed by
taking known correspondence pairs (x′

k,xk) and solving the
least squares problem

T̂ = arg min
T

N∑
k=1

‖x′
k − x̂k‖2 with

[
x̂
1

]
∝ T

[
x′

1

]
(7)

where N is the number of known correspondence pairs.
Once T̂ is estimated, sampling operators P and D have

to be defined. Each of them is associated with transformation
matrices T̂P and T̂D, respectively. The source image (right
operand) is sampled on locations that correspond to integer
locations in the destination image. Operators P and D use
nearest neighbor and bilinear interpolation, respectively. The
matrices fulfill condition T̂ = T̂P T̂D, and T̂D is chosen the
way that the smallest projected mirror has no side length
smaller than four on the image plane. Matrix T̂P is defined as

T̂P =

⎡
⎣S1 0 t̂1,3

0 S2 t̂2,3

0 0 1

⎤
⎦ (8)

where t̂i,j are the elements of T̂, and S1,2 are the scale factors
for the grid implicit to T̂P [see Fig. 1(e)].

For finding pairs (x′
k,xk), we use N not connected circular

control points loaded as pattern on the homogeneously illumi-
nated DMD. Each control points with radius r is represented by
a region R′

k on the mirror array. The ith mirror at location x′
i

is set towards the scene (Mi = 1), if it belongs to one of the
regions and is set towards the black surface (Mi = 0) if not:

Mi =
{

1 x′
i ∈ R′

k

0 x′
i /∈ R′

k
=

{
1

[
x′

i
1

]T
Qk

[
x′

i
1

]
≤ 0

0
[
x′

i
1

]T
Qk

[
x′

i
1

]
> 0

(9)

where R′
k is the region of the kth control point with k ∈ {n ∈

N : n < N}, and Mi ∈ {0, 1} is the state of the ith mirror.
Radius r and center location x′

0 = [u0, v0] of the kth control
point are defined by conic section Qk, which, in the case of a
circular shape with radius r, has the form

Qk =

⎡
⎣ 1 0 −u0

0 1 −v0

−u0 −v0 u2
0 + v2

0 − r2

⎤
⎦ . (10)

All N regions R′
k, displayed on the DMD, are projected onto

the image plane and form regions Rk of connected elements in
observed images y. The center points x′

k and xk of both regions
are used as pairs to solve (7).

When detecting the connected regions in the image y, the
problem of mapping a region to the correct source region
k remains. We solve this by taking several images yf and
hide or display each region R′

k on the DMD according to
an associated pattern pk = [p1

k . . . pM
k ] ∈ {0, 1}, which fulfills

condition k =
∑M

m=1 2m−1pk
m, with M = �log2(N + 1)
. Us-

ing this procedure, each observed region can be associated with
the corresponding source region R′

k on the DMD.

B. Circular Control Points Under Geometric Projection

In general, projection is not shape preserving. This is espe-
cially true if circular control points are used for a point-to-point
correspondence between the reference and image planes. A bias
is introduced if the centers of the projected circles on the image
plane are treated as the projected circle centers.

A conic section is a quadratic curve and defined by a
matrix Q. Locations x ∈ R

2 on a plane are on the curve if they
fulfill the condition

0 =
[
x
1

]T

Q
[
x
1

]
. (11)

The center x0 of conic section Q is defined with the pole of the
line at infinity L∞ = [0, 0, 1]T

[
x0

1

]
∝ Q−1L∞ = Q−1

⎡
⎣ 0

0
1

⎤
⎦ . (12)

The regions R′
k on reference plane Γ enclosed by a conic

section Qk with center point x′
k,0 are projected onto image

plane Π to regions Rk enclosed by conic section Bk ∝
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(T−1)T QkT−1 with center point xk,0. In general, the center
point xk,0 of Bk on the image plane is not the projection of the
center point x′

k,0 of Qk from the reference plane. Instead, x′
k,0

is projected to

[
x̂k,0

1

]
∝ T

[
x′

k,0

1

]
∝ TQ−1

k

⎡
⎣ 0

0
1

⎤
⎦ (13)

on the image plane. On the other hand, the center point
of Bk is

[
xk,0

1

]
∝ B−1

⎡
⎣ 0

0
1

⎤
⎦ ∝ TQ−1

k TT

⎡
⎣ 0

0
1

⎤
⎦ = TQ−1

k

⎡
⎣ t3,1

t3,2

1

⎤
⎦ .

(14)

The circle Qk, with x′
k,0 as the center point, on reference plane

Γ is projected to an ellipse Bk, with xk,0 as the center point,
on image plane Π. In performing a GC using point-to-point
correspondence, it is necessary to know point x̂k,0, which is the
projection of the circle’s center point on plane Π. In the case of
affine projection (t3,1 = t3,2 = 0), (14) shows that x̂k,0 = xk,0

and our calibration procedure, as described above, is correct. In
our setup, we have very fine control over the DMD orientation
and we can tune the position to have affine projection. In the
case of projective transformation, [15] describes a method for
finding the elements in T by solving a least squares problem
using the relationship in (14).

C. Calibration of Blurring Operator

Here, we describe our method to estimate the blurring kernel
in model (2). The 2-D discrete convolution is defined by

y(u, v) =
k∑

j=−k

k∑
i=−k

x(u − j, v − i) · h(j, i) (15)

where x, y : Z
2 → R are the source and convolved source

images, respectively, and h : {n ∈ Z : −k ≤ n ≤ k}2 → R is
the impulse response of the convolution filter. If x(u, v) = 0 for
all u /∈ Ω1 and v /∈ Ω2, with Ωi = {n ∈ N : n ≤ Ni}, it can be
represented by a vector x ∈ R

N1N2×1. Moreover, if (15) is only
evaluated on locations u ∈ Ω1 and v ∈ Ω2, it can be written as

y =
k∑

j=−k

k∑
i=−k

Sj
1S

i
2x · h(−j,−i) = Xh = Hx (16)

where y ∈ R
N1N2×1 is the convolution result, and matrices

Sj
u and Si

v are the shift operators. If vector x is associated
with function x(u, v), vector Sj

1S
i
2x is associated with func-

tion x(u + i, v + j). The columns of X contain all (2k + 1)2

shifted versions of x, and h ∈ R
(2k+1)2×1 is the lexicographi-

cally ordered vector representation of function h(·, ·). Operator
H is the convolution matrix in (2) with blurring kernel h(·, ·).
Combining model (2) with (16) yields

yk = PHDFkx + vk = PHz + vk = PZh + vk (17)

where z = DFkx. In the setup, D and P are known from the
calibration process, and matrix Fk depends on the arbitrary
binary pattern loaded into the DMD. The columns of Z are
shifted versions of z. During calibration, the DMD is uniformly
illuminated, which allows setting x = ξ · [1]1N , where ξ is the
illumination intensity. Equation (17) can be then solved with
respect to the impulse response h in the least squares sense by

h = (PZ)†yk (18)

where A† denotes the pseudoinverse of A.

IV. QUALITY MEASURES FOR MEASUREMENT MATRICES

AND THEIR IMPLICATIONS FOR THE TEST SETUP

In the last section, we discussed how to calibrate our pro-
posed model with a given setup. Here, we concentrate on the
quality of that model. First, we introduce two popular and
well-established measures for CS, namely, restricted isometry
property (RIP) and coherence. Then, we test different model
parameters against these measures and derive consequences
for the measurement setup configuration and the reconstruction
strategy.

A. RIP

The RIP is a matrix property introduced by Candès and Tao
in [11], where it is called the uniform uncertainty principle. The
original symmetric RIP for a matrix A = [ai]N1 ∈ {RP×N :
‖ai‖2 = 1} is defined as

(1 − δr) ≤ ‖Ac‖2
2 ≤ (1 + δr) (19)

where c ∈ {RN : ‖c‖2 = 1, ‖c‖0 = r} is an r-sparse vector,
and δr, the restricted isometry constant (RIC), is the smallest
value given all possible vectors c that fulfill condition (19).
Alternatively, the RIC can be understood as being the maximum
distance from 1 for all eigenvectors of all possible matrices
AIAT

I , where AI = [ai]I , and I is a set of indices with
cardinality |I| = s. It can be easily shown that an RIC with
δ2s < 1 (r = 2s) allows identification of all possible s-sparse
vectors, where identification means that there are no two s-
sparse vectors that are projected by A to the same point [11].
In [16], it is also shown that the convex relaxation (4) of (3)
is exact if δ2s ≤

√
2 − 1, and the authors also give an upper

reconstruction error bound for the case where the original
nonsparse signal is reconstructed from noisy measurements.

The RIP has been proven to be a useful tool in analyzing
reconstruction methods and decoders in the CS context (see
[17] and [11]). Due to its combinatorial nature, it is not practical
to calculate the actual value of the RIP constants for a given
sampling matrix. In fact, determining the RIP constants of
order s for a matrix of size [P × N ] requires one to calculate
minimum and maximum singular values of all possible

(
n
k

)
submatrices. In most literature, random matrices are used be-
cause of known asymptotic properties. Other authors use Monte
Carlo analysis [18] to avoid checking every possible submatrix.
However, as stated in [18], this analysis is not able to find
pathological submatrices and thus is, in most of the cases, too
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optimistic. Recently, a new greedy algorithm has been proposed
in [19], which is able to find pathological submatrices while still
being computationally cheap. With this algorithm, for the first
time, it is possible to explicitly have a good estimation for the
RIP constants for a given reasonable big matrix.

B. Coherence and Transformed Point-Spread Function

Mutual incoherence was first presented in the context of basis
pursuit (�1 minimization) by Donoho and Huo in 2002 [20]. It
measures the dissimilarity or incoherence between two bases
Ω1 = [ω1

i ]
N and Ω2 = [ω2

i ]
N and is defined as

μ(Ω1,Ω2) = max
i,j

〈
ω1

i ,ω
2
j

〉
= max

i,j
Ui,j (20)

where U = Ω1ΩT
2 and Ui,j are the elements of U. The mutual

coherence of the two orthonormal bases with∥∥∥ω1,2
i

∥∥∥
2

∣∣∣
i∈{n∈N:n≤N}

= 1 (21)

is obviously framed by 1/
√

N ≤ μ(Ω1,Ω2) ≤ 1. A value of
one means that both bases have at least one basis vector in
common, and 1/

√
N means maximal incoherence between the

two bases. In the context of CS, mutual incoherence is of
interest as we have system sensing matrix Φ and representation
matrix Ψ, which are presented in model (1). For successful
CS, both matrices should be as incoherent as possible, which
is equivalent to the statement that concentrated energy in repre-
sentation space is spread out in measurement space.

In addition to the presented mutual incoherence, there exists
a similar definition of coherence in [21], which is strongly
related to the transformed point-spread function (TPSF) in-
troduced in [7]. Given a sampling system y = Ax where x
is sparse, the quality of sampling matrix A with respect to
sparse reconstruction can be determined by its TPSF, which is
defined by

TPSF(i, j) = eiAT Aej (22)

where ek is a unit vector with the kth element set to one and
the rest to zero. The TPSF in matrix notation is equal to Gram
matrix G = AT A = [gj ]Nj=1, where gj = [gi

j ]
N
j=1 are column

vectors of size N . Coherence μ(A), as defined in [21], is then

μ(A) = max
j �=i

∣∣∣∣∣g
i
j

gi
i

.

∣∣∣∣∣ (23)

In contrast to the RIP, the TPSF and the coherence are very
easy to calculate as there is no combinatorial problem involved.
Moreover, as well as RIP, μ(·) provides performance guaranties
with respect to �1 solutions. For example, in [21], it is shown
that, if x is K-sparse and K < (1/4)[μ−1(A) + 1], then the �1
solution of (23) is guaranteed to provide a squared reconstruc-
tion error less than or equal to 4ε2(1 − μ(A)[4K − 1])−1. In
[22], the authors showed a connection between the coherence
and the RIP of a given matrix with respect to K-sparse sig-
nal reconstruction. They proved that δk(A) ≤ (K − 1)μ(A),
which provides an easy-to-calculate upper bound for the RIC.

Fig. 3. Coherence μ of measurement matrices ADCT and AHaar over
model parameters M and σ for [(a) and (c)] single-detector and [(b) and (d)]
multidetector setups. Lower values mean that better CS performance can be
expected. For all cases, performance increases with increasing sequent number
of measurements. (a) Single-detector setup (l2 = 1 detectors) for DCT basis.
(b) Multidetector setup (l2 = 256 detectors) for DCT basis. (c) Single-detector
setup (l2 = 1) for Haar wavelet basis. (d) Multidetector setup (l2 = 256) for
Haar wavelet basis.

C. Implication of Model Parameters on
Reconstruction Quality

Here, we study the implication of basic model parameters on
the two measures introduced above. To keep things simple, we
use a simplified model (2) with homography

T =

⎡
⎣ l · N−1

u 0 0.5
0 l · N−1

u 0.5
0 0 1

⎤
⎦ (24)

where l is the scaling factor. Blurring operator H is defined
by a 2-D Gaussian symmetric blurring kernel with standard
deviation σ and support of 4σ pixels in both dimensions. This
simplified model implies no other distortion than equally distant
downsampling and blurring, and it provides three degrees of
freedom for sampling, i.e., 1) number of sequent measurements
M ; 2) blurring intensity σ; and 3) downsampling factor l. With
respect to reconstruction, we also have the freedom to chose
representation basis Ψ. Both coherence and RIP measure the
quality with respect to matrix A, which directly measures the
sparse signal representation

y =

⎡
⎣ y1

...
yM

⎤
⎦ =

⎡
⎣ PHDF1

...
PHDFM

⎤
⎦ΨBc = SΨBc = ABc (25)

where S is the sampling matrix, and AB includes the complete
sampling process, including all M sequent measurements in
representation basis ΨB . In our quality experiments, we use
the discrete cosine transform (B = DCT) and the Haar wavelet
transform (B = Haar) as bases.

In Figs. 3 and 4, we measured the coherence μB and
the symmetric RIC δB for two scaling factors (l = 1, 16)
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Fig. 4. RIC δ10 of measurement matrices ADCT and AHaar over model para-
meters M and σ for [(a) and (c)] single-detector and [(b) and (d)] multidetector
setups. Lower values mean that better CS performance can be expected. For
values of δ10 ≤

√
2 − 1 ≈ 1.4, perfect reconstruction of an exactly (K = 5)-

sparse signal is possible using (4). (a) Single-detector setup (l2 = 1 detectors)
for DCT basis. (b) Multidetector setup (l2 = 16 detectors) for DCT basis. (c)
Single-detector setup (l2 = 1) for Haar wavelet basis. (d) Multidetector setup
(l2 = 16) for Haar wavelet basis.

over the number of sequent measurements M and blurring
intensity σ for the DCT (B = DCT) and Haar bases (B =
Haar). The high-resolution image was set to [Nu × Nv] =
[32 × 32] pixels.

The first thing to notice is that both coherence and RIP
measures provide qualitative comparable results. To the best of
our knowledge, this is the first time both measures are compared
over parametric scans.

In the case of l = 1 and high values for σ, we have a
model configuration that is similar or equal to the single-pixel
camera because the single-detector element then integrates over
the whole high-resolution image [see (5)]. As known from
literature, with a rising number of sequent measurements M ,
the quality of the sampling matrix increases when using a
single-detector element. This is indicated by low values of μB

and δB
s in Figs. 3(a) and (c) and 4(a) and (c). In contrast,

when using multiple detectors, DCT or Haar basis differs with
respect to μB and δB

s . According to Figs. 3(b) and (d) and
4(b) and (d), more measurements only improve the quality
if DCT is used as the sparsifying basis. The reason for this
is the high mutual coherence between the Haar basis ΨHaar

and the system sensing matrix S from (25). This is easy to
see because, when using a small blurring kernel and multiple
detectors, each single-detector elements does not “see” the
entire high-resolution image. The Haar basis (as every wavelet
basis) encodes frequency and local information, and because
of this, it is possible for a signal that is sparse in the wavelet
basis to be not detectable by the single pixel, which does not
cover the whole high-resolution image. This is the reason for
the degraded performance with small values of σ. In contrast to
this, the DCT basis does not encode local but only frequency
information. Consequently, a signal that is sparse in the DCT
basis has its energy spread all over and it is more likely to be

detected by a single detector, which does not cover the whole
high-resolution image.

Note that the performance measures improve with increasing
M . This is because matrix AB has dimension [Ml2 × NuNv]
and the problem gets less ill posed.

When comparing the single-pixel model (l = 1) with the
multipixel model (l = 16) in the DCT basis, it is obvious that
the number of sequent measurements (M) can be dramatically
reduced when using multiple detectors. For example, with a sin-
gle pixel, the coherence of the sampling matrix in the DCT basis
of μDCT = 0.2 is accomplished with M = 570 measurements.
Whereas in the multipixel case, for l = 16, the same μDCT is
achievable (at σ = 1.3) for M = 6 measurements. This is a
reduction of factor 100 at the cost of l2 = 256 more detectors.

The reduction of necessary measurements for sparse signals
in the DCT basis works well, but as Figs. 3(d) and 4(d) show,
it does not work in the (Haar) wavelet domain. The reason
for this is the local selectivity of each single detector and the
associated problems with the wavelet transform we discussed
above. This is the reason why we use only the DCT domain in
our experiments.

Another very interesting aspect is the best value for σ in the
multidetector case. In Fig. 4(b), it is obvious that there is some
optimal value for σ. If σ is too large, each detector more or less
“sees” the same blurred image, and on the other hand, if σ is
very low, the response is concentrated to very few local pixels
in the high-resolution image. Fig. 4(b) indicates an optimal
value of σ ≈ 1 that is supported by other experiments we did,
which all indicate an optimal value of σ = Nu/2l = Nv/2l
for the rectangular case (Nu = Nv). The consequence is that
system performance is at its best if the detector array is in focus.
Even with the perfect focus, we cannot achieve optimal blurring
because of the size of each detector.

In Table I, we present the system performance in terms
of peak signal-to-noise ratio (PSNR) using four images from
the Berkeley segmentation database [23].1 The images were
changed to gray scale and then resized to [32 × 32] pixels
before they were used as ground truth. For reference purpose,
the PSNR of the best K-sparse approximation in the DCT basis
is calculated for each image and displayed in the table header.
All other PSNR readings in the table represent the quality of
a K-sparse (with K = 30 nonzero elements) reconstruction
from measurements taken with respective model parameters l
and M . Reconstruction was performed in the DCT basis with
compressive sampling matching pursuit (CoSaMP) [24], which
is a fast greedy algorithm to solve (3), where it is guaranteed
that the solution is exactly K-sparse. Blurring intensity was
set to σ = 32/2l. It can be seen how the number of sequent
measurements can be decreased if more detectors are used.

V. EXPERIMENTS

Here, we present some results of the GC, point-spread func-
tion (PSF) estimation, simulations of the calibrated model, and
CS reconstructions.

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
segbench/BSDS300-images.tgz
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TABLE I
RECONSTRUCTION QUALITY USING DIFFERENT NUMBER OF DETECTORS

(L = l2) AND DIFFERENT NUMBER OF SEQUENT MEASUREMENTS (M).
SIMULATED WITH FOUR IMAGES FROM THE BERKELEY SEGMENTATION

DATABASE [21]. ALL IMAGES WERE SCALED TO [32 × 32] PIXELS, AND

K = 30 NONZERO COEFFICIENTS WERE RECONSTRUCTED IN THE

DCT BASE WITH THE COSAMP ALGORITHM

Fig. 5. Schematic of a single-pixel camera’s position in relation to the mirrors
of the DMD under affine projection.

A. GC

With GC, the detector-to-mirror relationship is determined.
For calibration, we use as many circular control points as pos-
sible to fit on the DMD array with a resolution of [Nu × Nv] =
[1024 × 768]. For a good calibration, it is necessary to have
many large control points. In Fig. 6, the repetition accuracy of
different combinations for a number of control points and their
size is displayed. In the figure, we have calibrate the system
100 times for every combination and calculated the standard
deviation (given in mirror dimensions) of a reference-detector’s
offset (see Fig. 5). As a reference detector, we used the one
closest to the top left, center, and bottom right mirror locations.
In Fig. 6, we see a very good repetition accuracy value of
about 0.1 times a mirror size. In the given setup, each detector
had width and height of 3.44 and 3.52 in mirror dimensions,
respectively.

Fig. 6. Location offset repetition accuracy values of three detectors, which
are associated with the top left, center, and bottom right mirrors of the DMD
(see Fig. 5). Accuracy is measured as standard deviation over 100 calibrations
at different number of control points and different radii of these points.

Fig. 7. PSF of system. (a) Mean over 10 measurements with different random
binary DMD patterns and PSF estimations using an area of [700 × 500] mirrors.
The cross is located at the point of gravity, and the square indicates the size of
a single detector. (b) Standard deviation of each element in the PSF.

B. Blur Estimation

To measure blurring, which is defined by its PSF of the setup,
we solved (18) for an impulse response with size [11 × 11]
and a random binary DMD pattern Fk. In Fig. 7, the result
of the estimation is shown. Fig. 7(a) presents the mean PSF
over 10 measurements, and in Fig. 7(b), the standard deviation
of each element in the PSF is displayed. The PSF estimation,
as well as GC, tries to find out the relationship of mirrors to
detectors on the array. While GC operates on a large scale,
PSF estimation considers only mirrors around the calibrated
center of a detector. The PSF we estimated for our setup [see
Fig. 7(a)] is well centered and thus indicates a very precise
subpixel GC because the detectors are symmetrically influenced
by “underlying” mirrors.

The relatively high standard deviation of the PSF elements
is caused by inhomogeneity of the scene during calibration.
To compensate for this, we used many measurements with
different DMD patterns and a large area of [168 × 210] mirrors.

C. Simulations Using the Calibrated Model

With the calibrated model, we simulate the system and show
its theoretical super-resolution performance. In Fig. 8, two
ground truth images (a) and (d) were sampled M times with
the calibrated model according to (2). The resolution of the
detector array is set to [Nx × Ny] = [16 × 23], and the resolu-
tion of the reconstructed image is [Nu × Nv] = [55 × 81]. The
scaling between low- and high-resolution pixels is (S1, S2) =
(3.44, 3.52) [see (2)]. In Fig. 8(b) and (e), the output of the
detector array is shown without any multiplication pattern Fk

applied. This is the best resolution one could expect from the
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Fig. 8. Reconstruction of simulated measurements with the calibrated model.
[(a) and (d)] Original images ([55 × 81] pixels). [(b) and (e)] Low-resolution
output of detector array ([16 × 23] detectors) without any multiplication
pattern Fk applied. (c) Reconstruction using M = 10 measurements and
K = 50 in DCT basis. The best K-sparse approximation is 17.96 dB, and the
reconstruction result is 17.77 dB. (f) Reconstruction result. The best K-sparse
approximation is 19.62 dB, and the reconstruction result is 19.53 dB.

system without the discussed approach. In Fig. 8(c) and (f),
the reconstruction result using the calibrated model with M =
10 is presented. K-sparse reconstruction was performed with
K = 50 in the DCT basis with the CoSaMP algorithm. The
reconstructions show the possible super-resolution performance
of the calibrated model. In particular, the bottom image (d) is
reconstructed well because of its periodic structure, which can
be approximated very sparsly in the DCT basis.

D. Real Data Measurements

With the measurement setup discussed in Section II, we took
sampling data and reconstructed them using the same calibrated
model that was used for the simulation above and the CoSaMP
algorithm. Reconstruction was performed in the DCT basis,
and resolution of the reconstructed image and low-resolution
measurement were [55 × 81] pixels and [16 × 23] detectors,
respectively.

Fig. 9(c) shows the reconstruction of a periodic structure,
which can be represented very sparsely in the DCT basis.
Fig. 9(a) is a picture of the scene, and in Fig. 9(b), the camera
(detector array) image is presented. Using only M = 20 mea-
surements and K = 30, we were able to reconstruct the image
in Fig. 9(c). The reconstruction of a second object is shown
in Fig. 9(f). A picture of this object is presented in Fig. 9(d).
Obviously, its representation in the DCT basis is not as sparse
as that in the last example. Thus, we used K = 300 and M =
30 measurements to reconstruct a high-resolution image. The
detector array image is shown in Fig. 9(e). In general, these
real experiments show the super-resolution performance of our
setup and our new model as the reconstructed images have a far
better resolution compared to the detector array on its own.

VI. CONCLUSION

In this paper, we have presented a new CS model and a real-
world test setup covered by this model. We presented methods
for successfully calibrating the model with all its parameters

Fig. 9. Reconstruction results of real data. [(a) and (d)] Picture taken of the
scene. [(b) and (e)] Best image observable by the detector array. [(c) and (f)]
Reconstruction of the scene using M = 20 and M = 30 measurements. The
upscaling factors are (S1, S2) = (3.44, 3.52).

to the test setup. Measurement results regarding the calibration
accuracy are presented. We also provided quality measures
of the sampling model for different model parameters based
on well-established quality measures. A variety of simulations
were presented on different model parameters and on an actual
calibrated model to show the performance of our new model.
In addition to this, we presented the reconstruction of real
measurements performed with the proposed setup.

From all our experiments, it is clear that, if multiple detectors
can be used, there is a benefit compared with a single detector
in terms of measurement time and number of sequent measure-
ments while providing comparable reconstruction quality.
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