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ABSTRACT
In this paper we present a new compressed sensing model and
reconstruction method for multi-detector signal acquisition. We
extend the concept of the famous single-pixel camera to a multi-
detector device with the benefit of reducing measurement time,
while still providing resolution enhancement and deblurring. We
provide a scalable model which allows the trade off between
system complexity (number of detectors) and time (number of
measurements).

We test our model on simulated sparse and compressible data
and show convergence using the proposed reconstruction method.
We also show that our model allows for significant reduction of
necessary measurements.

A real-live setup for data acquisition according to the new model
is presented and we show successful reconstruction of the acquired
data. With this setup it is possible to acquire super-resolution
images with a low resolution camera. The measurements can also
be corrupted by a considerable amount of blurring and noise.

Index Terms— Single pixel camera, Compressed sensing,
Wavelet, Super resolution, Deconvolution, Deblurring

I. INTRODUCTION

The Shannon sampling theorem gives a limit for the resolution
of sampling systems due to its statement that a signal’s information
can be perfectly reconstructed if it is sampled uniformly at a
sampling rate which is at least twice the maximum signal frequency.
In recent years, a theory named Compressive Sensing (CS) emerged
which overcomes the limitations that Shannon’s theorem imposes
on sampling systems. CS is motivated by the fact that most natural
signals are sparse or at least approximately sparse in a certain basis
like, for example, a wavelet or Fourier basis. CS exploits the signal
compressibility during the sampling process by measuring a few
informative signal parts directly and therefore makes it possible to
reduce the sampling rate drastically.

Assume a signal vector x ∈ R
N has a K-Sparse representation

x = Ψc in the basis [ψn]
N
1 = Ψ, which is named representation

matrix in this paper. The rows of the matrix Ψ have an (bi-)
orthogonal relationship with the columns of the matrix Ψ̃, which
is named sparsifying matrix (ΨΨ̃ = I). K-sparse means that
||c||0 ≤ K, where || · ||0 : R

N → R counts non-zero entries
and 0 < K ≤ N .

Sampling M projections of x leads to the model

y = [〈φm, x〉]1M + v = Φx + v = ΦΨc + v, (1)

where Φ is the system sensing matrix as it represents the behavior
of the measurement system. Together with the representation matrix
they form the sampling matrix ΦΨ for the vector c which is the K-
sparse representation of x. Observation noise is taken into account
by v.

Compressive sensing theory tells us that, in certain situations,
there exists a unique solution to the inverse problem of finding
c given M < N measurements. While it has been proven that

finding c by brute force methods is NP-Hard, the problem can be
reformulated as a convex program

ĉ = argmin
c

||c||1 s.t. ||y −ΦΨc||2 ≤ ε, (2)

where ||c||1 =
∑N

1 |ci| is the �1-norm and ε bounds the amount of
noise in the observation data. Providing ||c||0 ≤ K and a noiseless
sampling process (ε = 0), Candes et al. [1] showed that exact
recovery of c is possible if the Restricted Isometry Property (RIP)
[2] holds for the sampling matrix.

The Restricted Isometry Property and more specifically the
Restricted Isometry Constant (RIC) δK as matrix quantity are very
important in CS context. Many algorithms’ error boundings rely on
the RIC. The RIP imposes the following condition on the sampling
matrix:

(1− δK)||c||22 ≤ ||ΦΨc||22 ≤ (1 + δK)||c||22 (3)

The RIC δK is the smallest constant for which the inequalities
hold, given all possible K-sparse signals c. The RIP is said to hold
if δ2K < 1, which implies unique reconstruction [2]. If δK �
1 then the sampling matrix nearly maintains the �2 distance of
different vectors c, which implies good reconstruction (inverting)
behavior. Unfortunately determining a RIC of a given sampling
matrix is an NP-Hard problem [3] and therefore it is not practical
to choose Φ to be a structured matrix. But if the elements of Φ are
independently drawn from a random distribution like Gaussian or
Bernoulli, we obtain (given an (almost) orthonormal representation
matrix Ψ) a RIC of δK � 1. Prerequisite is a sufficiently high
number measurements of M = CK log(N/K), where K is the
expected sparsity level, N is the number of signal components,
and C is an arbitrary but small constant which may change from
appearance to appearance.

In real-life situations, signals are (i) noisy and (ii) not sparse, but
compressible [4], which means that there exists a good K-Sparse
approximation. For such signals, ε in (2) depends on the observation
noise level and the desired sparsity. The smaller the RIC for the
sensing system, the smaller is the reconstruction error for those
signals.

In this paper we extent the traditional compressive sensing
model to a multi-detector model, which covers the simultaneous
measurements of different but similar mixtures of a single source
signal. The detectors are places on an arbitrary grid on the source
signal and each detector integrates the source signals only locally.
The motivation for this new model is derived from applications
where arrays of detectors are available but due to either size
or cost, resolution is very low. One example are time-of-flight
cameras where each pixel is a signal correlator and therefore
needs a significant amount of area on the silicon for the electronic
circuitry. In addition to this motivation, which has been used to
justify traditional compressed sensing system like the single-pixel
camera [5] before, our new model allows the reduction of required
measurements (or measurement time) by using more detectors.
This has significant importance because it allows the trade off
between number of detectors (system costs or complexity) against
measurement time. However, introducing more than one detector
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is not a trivial extension to the single-pixel camera, where each
element can be treated on its own. The detector signals might be
correlated caused by crosstalk, which has to be considered during
reconstruction.

Using multiple detectors in compressive sensing context is not
new and has been used in [6] to reconstruct a single source
image by assuming sparse representation of single image tiles
using over complete dictionaries. In [7] the authors used several
audio receivers to reconstruct a source signal. They assumed the
measurements to be a shifted and filtered version of the original
signal. In [8] the authors present a general framework for related but
not identical signals supplied by several detectors. They introduce
a structured sparsity model and assume the detector signals to be
represented by such a model.

Even though our model also allows several detectors capturing
only local, but possibly correlated parts of a source signal we do not
assume a sparse representation of the individual detector signals but
a sparse representation of the whole source signal. To test our new
model we built up a test setup for compressive image acquisition
similar to that in [5] but with a multi detector receiver. We also
present simulations to show convergence and the trade off between
system complexity and number of measurements.

In the next section we will introduce our new multi detector
compressive sensing model, in Section III we show an approach
of signal reconstruction using this model. Section IV presents
experimental and simulation results.

II. SAMPLING MODEL
We assume a sampling system were we have control over a

weighting element, which is able to multiply the original source
signal by a predefined pattern. In our experimental setup this
weighting element is a digital mirror device (DMD) with thousands
of controllable mirrors. Further we assume that the weighted
original signal is captured by one or more detectors either capturing
the whole or parts of the weighted signal. With no loss of generality
we assume the signals to have two dimensions and call them images
from now on. For the sake of better readability we represent the
images in vector form by lexicographic ordering.

Our model covers the acquisition of l2 different (but possibly
similar) linear mixtures of an original image:

yk = P̂ĤFkx + vk ∀k ∈ {1 . . .M}, (4)

where x ∈ R
[N×1] is the high-resolution image and yk ∈ R

[l·l×1]

is the k-th measurement of l2 mixtures. Matrix Fk is diagonal
and includes the weights for each element in x. The matrix P̂Ĥ
models the sampling process, where this process is splitted into an
FIR convolution operation Ĥ ∈ R

[N×N ], modeling the influence of
each element in Fkx on each detector and a Dirac sampling operator

P̂ ∈ R
[l2×N ]. Together they can model detectors integrating over

different region of interests. vk represents additive zero mean, white
Gaussian noise with E[vkvT

k ] = σ2I, where I is the identity matrix.

The sampling operator P̂ models the detector sampling grid on the
high resolution input image. If applied to an image x, the result
is a low-resolution image y = P̂x, where the dimension of y and
the sampling locations on x are defined by the actual setup. The
same operator can also be used for upsampling by applying its

transposed. Then z = P̂
T

y is a high-resolution representation of y,
which is also defined by the sampling grid. The sampling values
are bilinearly interpolated, if necessary, and locations not covered

by the sampling grid are left zero, by the upsampling operator P̂
T

.
Fig.1 illustrates this behavior.

To incorporate all M measurements into a single model, we
extend (4) to

y = PHFx + v, (5)

where y = [yT
1 , yT

2 , . . . , yT
M ]T holds all measurements, P = IM ⊗

P̂, H = IM ⊗ Ĥ, and F = [F1,F2, . . . ,FM ]T . Vector v represents

Gaussian noise with E[vvT ] = σ2IM·l2 . The notation Ir represents
the identity matrix with dimension [r× r]. The operator ⊗ denotes
the Kronecker matrix product.

The model (5) also covers the model (1) if P̂Ĥ = 11×N , that is,
there is only a single detector integrating over the whole weighted
images Fkx with k = 1 . . .M , where the notation 1r×t represents
a matrix filled with ones with dimension [r × t].
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Fig. 1. Illustration of sampling operator P̂. Values are bilinearly
interpolated, if sampling grid lays on non-integer locations. (a):
Original image x is sampled by the operator at 9 locations (down-
sampling). (b): Result of downsampling operation P̂x. (c): Result

of upsampling operation P̂
T

P̂x.

III. RECONSTRUCTION

Reconstruction of the original signal x of length N , given the
measurements y as described by model (5) with l2 detectors and
M measurements is an ill-posed problem for two reasons. First, if
the total number of measurements Mtot = l2 ·M < N , (5) forms
an underdetermined system of equations. Second, the correlation of
the detector signals modeled by the blurring operator Ĥ requires a
deconvolution of the measured signals which is also known to be
ill-posed.

To recover the original signal x from measurements y, we
minimize objective function

f(x̂) = fdata(x̂) + λfprior(x̂)
= ||y − PHFx̂||22 + λ||Ψ̃x̂||1, (6)

where fdata(x̂) is the data fidelity term which is the �2-norm
of the error between measurements and the estimate x̂. Due to
the ill-posed nature of the problem we introduce the fprior(x̂)
which is the �1-norm of the sparse representation of x̂. The
regularization constant λ weights the prior against data fidelity.
A good representation space, defined by sparsifying matrix Ψ̃,
concentrates the signal’s energy to a few components and therefore
allows a good sparse approximation. For example smooth signals
are good represented in Fourier domain, piecewise constant signals
have a good representation in wavelet domain.

Note that (6) leads to the same solution as (2), if PH = IM ⊗
11×N , in which case (5) is equivalent to (1).

IV. EXPERIMENTS

In our experiments we show the efficiency of our proposed model
in terms of number of detectors and number of measurements trade
off. We show that using more detectors reduces the amount of
necessary measurements significantly. Simulations on sparse and
approximately sparse (compressible) images show the influence of
model parameters and a real world test setup which acquires data
according to the model (5) is presented as well.
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IV-A. Simulation for exactly sparse images
In this section we present simulation result for signals which are

exactly sparse in a representation domain. We determine required
measurements Mreq for perfect reconstruction of the original
image, which was constructed from the lena-image by scaling
it to n × n = 32 × 32 pixel and only taking the dominating
K = 10 coefficients in 5-3 wavelet domain. The diagonal
elements of Fk are chosen from a Bernoulli distribution with the
elements {−1, 1}. The impulse response h of the blurring operator

Ĥ was set to a 2D Gaussian blurring kernel with variance ρn/l
and size (2n/l + 1)2, where we chose different values for ρ in
the experiment. The experiments were repeated 30 times. Mean
number of required measurements Mreq are plotted in Fig. 2. For
comparison purpose, we also plotted the minimal measurements
needed for the traditional model (1) as dashed line.

The figure shows that the required number of measurements
for perfect reconstruction decreases with increasing number of
detectors, thus showing the trade off between system complexity
and measurement time. It also shows a minor dependency of Mreq

from the amount of blurring, where the Mreq tends to be lower
with less blurring.
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Fig. 2. Number of measurements Mreq necessary for perfect re-
construction using l2 detector elements. The experiments involved a
ground truth image of size n×n = 32×32 pixel, with a (K = 10)-
sparse representation in 5-3 wavelet domain. The measurements
were not corrupted by noise but with blurring defined by a Gaussian
blurring kernel with variance ρn/l and size (2n/l + 1)2.

IV-B. Reconstruction of compressible signals
Natural signals are almost never exactly sparse in any space.

But they can be approximated well by sparse signals, because few
coefficients in representation space contain most of their energy.
This class of images is called compressible. Indeed many lossy
compression algorithms like MP3, JPG, JPG2000, etc. rely on the
property of good sparse signal approximation. Therefore to be able
to sample and reconstruct natural signals, it is essential for com-
pressive sensing application to also work for compressible signals.
In this experiment we test our model (5) and the reconstruction
approach of Section III on compressible images.

In this experiment we use the lena-image of size l×l = 64×64
and take M = 20 measurements with l × l = 16 × 16 detectors
according to model (5). The blurring operator Ĥ is defined with a
Gaussian kernel of size [11×11] and a variance of two. Fk is a di-
agonal matrix with its values independently drawn from a Bernoulli
distribution with elements {−1, 1}. The ground truth image (x) of

the experiment and the effect of blurring and downsampling (P̂Ĥx)
is shown in Fig. 3(a) and (b), respectively. Note that even though we
have 16×16 detectors, Fig. 3(b) is bilinearly upscaled to destination
resolution of 64× 64 pixel.

To show the influence of measurement noise on the reconstructed
image, we added different levels of noise to the measurements

and applied the reconstruction method of Section III. The reg-
ularizer uses the 5-3 wavelet space for signal representation. For
the regularization parameter λ, we choose the value with the
best reconstruction quality at a measurement-signal-to-noise-ratio
(SNR) of 20dB and use the corresponding regularization parameter
λ20 as reference for the other noise levels. They are calculated by
λS = λ2010

2−S/10, where S is the noise level, as SNR, of the
corrupted measurements.

In Fig. 4 the quality of the reconstructed image, measured as
PSNR against the known ground truth, is shown. Interestingly the
reconstruction method needs longer to converge when less noise
is added to the measurements, even though the quality of the
reconstruction is better. It also shows that the reconstructed image
is considerably degraded if noise level rises. As a reference we
plotted the quality of a (K = 800)-sparse approximation of the
ground truth image as horizontal gray dashed line in the plot. The
red dashed lines are the reconstruction results for a single pixel
camera using M = 20 and M = 2048 measurements with an SNR
of 60dB. It is obvious that our model with M = 20 measurements
provides substantially better results. Fig. 3 shows the reconstructed
images using measurements with an SNR of 60dB (Fig. 3(c)) and
20dB (Fig. 3(d)).

IV-C. Reconstruction of real life signals
To test our model and reconstruction on real data we built up a

setup with a DMD (digital mirror device) as optical multiplication
element (modeled by matrix Fk), a detector array (actually a
matrix camera) and two lenses (see Fig. 5). The DMD is a micro
chip device with many thousands of micro mirrors. They are
places upon SRAM-cells and are individually switchable to one
of two directions. The optical multiplication is performed by either
switching towards the scene (multiply by 1) or towards a black
background (multiply by 0).

The diagonal elements of the multiplication matrix Fk are again
independently drawn from a Bernoulli distribution with elements
{−1, 1}. Since the DMD only allows multiplication with 0 and 1
the sampling process of a single measurement yk from model (4) is
splitted into two measurements and we use the difference of both
measurements.

The reconstruction results of the letter ”R” can be seen in Fig. 6.
The sub figure (a) shows the the original image from the camera
bilinearly interpolated. Sub figure (b) shows a single measurements
yk according to model (4). In sub figure (c) the reconstruction
result is shown. The result is upsampled by a factor of 6.75 in
each dimension and M = 64 measurements were taken. The
reconstruction obeys a high-resolution image of the scene, which
would not even be achievable with a higher resolution camera,
because of the blurring effect the camera optic introduces. But of
course, the reconstruction can not be better than the projection onto
the DMD and resolution can not be increased beyond that of the
DMD.

(a) (b) (c) (d)

Fig. 3. Reconstruction using multi-pixel compressive sensing. (a)
Original Image with 64× 64 pixels. (b) Bilinearly upscaled output
of 16 × 16 detectors. (c) Reconstruction using M = 20 measure-
ments with an SNR of 60dB.. (d) Reconstruction using M = 20
corrupted measurements with an SNR of 20dB.
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Fig. 4. Convergence of quality (measured as PSNR against ground
truth) plotted over the iteration steps of the solver for different
measurement noise levels (specified as SNR) for the proposed
model. Higher SNR corresponds to higher PSNR result. The dashed
horizontal line is the PSNR of a K-Sparse approximation of
Fig. 3(a) with K = 800 coefficients in 5-3 wavelet domain. The
two red dashed lines are the reconstruction results for the single-
pixel model for comparison purpose at M = 20 and M = 2048
measurements with SNR=60dB.
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Fig. 5. Schematic of data acquisition system used for our experi-
ments. A scene is projected onto a DMD (digital mirror device),
which performs an optical multiplication of the projected scene
with a pattern Fi

k (i ∈ {1, 2}). The resulting image on the DMD
is projected through a second lens on an array of light detectors.
Several measurements of this detector array together with several
patterns Fk are used to reconstruct a high-resolution image.

V. CONCLUSIONS
In this paper we presented a new compressive sensing model

using multiple signal detectors. The measurement signals represent
different, but possibly similar, observations of a high-resolution
scene. We presented a reconstruction method to successfully recon-
structed a high-resolution scene from multi-detector measurements.
We also showed the trade off between number of detectors and
number of necessary measurements ranging from a single detector
to full resolution of the output image. Beside the super resolution,
our method also performs an implicit deconvolution, with very good
reconstruction quality regardless of blurring intensity.

We showed that our method works on simulated sparse and
compressible data and we presented a setup for real data acqui-
sition and successfully reconstructed high-resolution images with
measurements from a real low-resolution detector array.

Even though the proposed reconstruction method using convex
programming converges, the convergence speed is very low. Many
algorithms have been developed for the traditional and extended

compressed sensing models to improve convergence speed like Or-
thogonal Matching Pursuit (OMP), Compressive Sampling Match-
ing Pursuit (CoSaMP), and iterative hard thresholding (ITH) (See
[9] and references therein). We have to investigate the application
of those algorithms to our new model. Beside that, theoretical
guaranties for the proposed model and reconstruction methods have
to be given.
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Fig. 6. Reconstruction results of real data. (a): Best image ob-
servable by the detector array bilinear interpolated to destination
resolution. (b) Single measurement of the scene optically multiplied
by a random pattern F1

k. (d) Reconstruction of scene using M = 64
measurements. The up scaling factor is 6.75.
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