
OMAP 3 BASED SIGNAL PROCESSING FOR BIOMEDICAL ENGINEERING
TEACHING

Matthias Klostermann, Olaf Christ, Kunal Mankodiya, Simon Vogt and Ulrich G. Hofmann

Institute for Signal Processing, University of Lübeck, Lübeck, Germany
Ratzeburger Allee 160, 23538 Lübeck, Germany

phone: + (49) 451.500.5803, fax: + (49) 451.500.5802, email: hofmann@isip.uni-luebeck.de
web: www.isip.uni-luebeck.de

ABSTRACT
When it comes to academic signal processing, students‘ ex-
periences are sometimes spoilt by the dry nature of the topic,
applying only mathematical methods. We propose in the
following a more hands-on method to acquire signal proc-
essing experiences by utilizing state-of-the-art Digital Signal
Processor hardware for biomedical engineering related
tasks. In order to circumvent hindering setup problems we
provide students with a complete and royalty free develop-
ment environment based on Virtual Machines to program an
OMAP3530 dual core processor. That way students can
jump start implementing class relevant signal processing
algorithms and gain a physical impression of realtime signal
processing.

1. INTRODUCTION

When facing nowadays needs of academic engineering
teaching, the chinese proverb „I hear and I forget. I read and I
remember. I do and I understand“ is probably the shortest,
but nevertheless best appraisal of its state. Teaching of Digi-
tal Signal Processing thus should be an application of the
above statement attributed to Lao Tse.

In order to comply with the proverbs implications, students
do not only attend a more or less complex lesson on DSP („I
hear“), but have to study the underlying textbooks as well („I
read“). However, when it comes to satisfy the „I do“ criterion
in teaching, the activity often is limited to exercising mathe-
matical calculus to solve nice academic problems (see e.g. [1,
2]. This may or may not lead to an understanding of DSP
worth recalling for the individual student, but we doubt that it
is the best way of „doing“ DSP. In particular, it seems not to
meet the needs of more application oriented fields like bio-
medical engineering.

We consequently propose a less calculus oriented „learning
by doing“ approach to Digital Signal Processing by exposing
students to a real world digital signal processor of the newest
build. Thus, they are not only learning the concepts of Digi-
tal Signal Processing on a problem oriented bases, but also
applying them in a cutting edge, portable, deterministic and
low-power implementation with biomedical engineering mo-
tivations.

Above mentioned teaching ideas are not easily met in reality,
not even with current commercial DSP systems, although
their evaluation boards come with a dedicated set of tools
and examples [3]. Instead, even this support leads to an indi-
vidual learning curve too steep for a student to be mastered
during term-long problem solving. We therefore looked for a
better supported and proven DSP system and found it in the
Open Source community.

The following report will describe our efforts to integrate this
state-of-the-art dual core microcomputer chip into our teach-
ing for biomedical engineering classes at the masters level.

2. MATERIALS AND METHODS

The chip we recently started to use in a number of student
development projects is the OMAP3530 from Texas Instru-
ments (TI), which contains a fast ARM core, a DSP core, and
a graphics accelerator all on one die. This new generation of
OMAP processors is officially distributed by TI, but has a
large and growing online community supporting it. As this
generation of processors is still fairly new, it is probable that
these chips can be used for another 3-5 years without loosing
software support.

The OMAP3530 processor can be ordered as part of an offi-
cial full-scale evaluation module (OMAP3530EVM, Texas

http://www.isip.uni-luebeck.de
http://www.isip.uni-luebeck.de

Instruments) that provides most peripherals such as a nu-
meric keypad and a TFT display for completeness.

For our purposes more suitable is a different interesting ap-
proach to development boards and follows the idea of keep-
ing the board as simple as possible and supplying only the
most needed peripheral hardware mounted on the board itself
(Fig.1). Such a system has been developed for the
OMAP3530 by a open source community under the name
BeagleBoard (BeagleBoard.org, USA).

2.1. Overview over the BeagleBoard

Unlike commercial development boards, the BeagleBoard
has an open source and freely supported operating system
coming with a growing repository of working applications.
The large and advantageous development community of
BeagleBoard developers can often solve a problem faster
than the technical support of TI can do, although most com-
munity efforts are currently still aimed towards the Embed-
ded Linux ARM part of the system.

On top of the low price and large and fast support, the Bea-
gleBoard has another advantage: Its physical dimensions are
just around 10x10 cm, making it more suitable for portable
and student applications at a university.

The USB-powered BeagleBoard is a low-cost, fan-less sin-
gle board computer based on a TI OMAP3530 dual core
processor that is said to reach laptop-like performance and
integrates a 600MHz ARM Cortex-A8 core with a high-end
430MHz DSP-TMS320C64x core [4].

Additional hardware can easily be connected via USB as
mentioned above [4].

2.2. BeagleBoard tool chain

With the BeagleBoard every developer faces the opportunity
as well as the challenge to write applications for both the
ARM Cortex A8 Core and the TSMC320C64x+ DSP Core of
its OMAP35x platform. But before the developer gets a
chance to probe the hardware for its potential, he needs a
suitable development environment to facilitate his endeavor.

The ARM Cortex A8 Core fulfills the role of a general pur-
pose processor running various Embedded Linux Distribu-
tions like Angström, Debian ARM, Ubuntu ARM or even
Google‘s Android. With every major Linux Distribution
comes a repository of open source software, allowing the
user to work "out of the box" with familiar applications.

In the context of signal processing the available Linux tools
and APIs may be used for data acquisition and visualization
by simply writing an application on a PC and subsequently
compiling it for the ARM architecture.

However, for a student eager to learn the ways of digital sig-
nal processing the focus of this environment clearly lies on
the DSP tool chain and less on the ARM side of the chip.
One of these DSP tool chains, including a complete IDE, is
TI's Code Composer Studio (CCS): Specialized on TI's line
of DSP hardware, it provides a complete suite for code edit-
ing, generation and debugging (e.g. JTAG), needed to get
started immediately. For industrial use it comes with a hefty
price-tag, but an academic and teaching license is available.

For outside the classroom use, TI's free C6x Code Genera-
tion tool chain accompanied by the DSP/BIOS 5.X.X sources
poses a fairly basic alternative to the full fledged CCS. These
tools form the back-end of CCS anyways, however it is only
possible to generate plain binaries for the DSP with them. A
non-proprietary way to compensate the lack of an IDE, a
debugging facility and a transfer of generated DSP-binaries
to the DSP-core is needed.

An alternative to the IDE part of Code Composer Studio may
be found in several different open source IDEs like
Code::Blocks [5] or Eclipse [6], though the level of integra-
tion varies from a mere colored text-editor up to plugins for
the transfer of binaries to the board. If there is no such plugin
available, the transfer may be done with a USB stick, USB
harddrive or an SD card. We chose the open source supported
Code::Blocks as our IDE [5].

For data visualization and especially debug output we utilize
the ARM Cortex itself: CodeSourcery, developer of a com-

Fig.1: Diagram of the BeagleBoard with the OMAP3530
processor in the center and many useful peripherals on board
[4].

http://focus.ti.com/general/docs/gencontent.tsp?contentId=36915
http://focus.ti.com/general/docs/gencontent.tsp?contentId=36915

mercial GNU compiler collection [7] offers with Sourcery
G++Lite a free open source C/C++ tool chain for ARM
processors, making it relatively easy to write applications for
the Linux distribution running on the OMAP35x. The miss-
ing link between the ARM- and the DSP-core is supplied by
TI's DSP/BIOS-link API in a master-slave constellation. Thus
the DSP/BIOS-link API is controlling the DSP from the ARM
side, starting it, stopping it and feeding it with the DSP bina-
ries.

2.3. Student‘s developing environment

Provided with a completely free set of tools it is now possible
to send the students off to install everything and then have
them start experimenting, which may be done for advanced
computer science students. But installing all the parts of the
tool chain is time consuming and small mistakes during the
setup lead to long searches for the cause, unnecessarily con-
suming even more time and hindering the learning curve.
We shorten this delay by using a Virtual Appliance approach
[8, 9]. In the beginning of the DSP class, we create a plat-
form independent package containing a Linux distribution
and a finished setup of the tool chain. The virtual disk image
thus contains:

• pre-installed and pre-configured Ubuntu Linux 8.10
• Code::Blocks IDE [5] 8.02
• the Sourcery G++ Lite [7] ARM development tool

chain
• the DSP development tool chain:

o TI C6x Code Generation Tools
o DSP/BIOS 5.33.03
o DSP/BIOS-Link 1.61

It can be downloaded at a student accessible site or is handed
out as DVD-ROM. The student using this package is then
able to start with development on the OMAP35x, just shortly
after installing the Virtual Machine [9] on his PC.

In fact, the necessary effort for the student is reduced to the
following, simple steps: Install the Virtualization Software on
the PC and add the Virtual Machine to it [9]. Connect the
Beagle Board (BB) and the PC with a RS232 serial connec-
tion, and a monitor at the DVI output (see Fig.2). Plug a pre-
configured SD card containing e.g. Angström Linux into the
BB. Start a terminal client on the PC connecting to the serial
port. Connect the power supply (either a mini-USB-B to
USB-A cable or a regular 5V power supply) to the BB and
watch it boot on the SSH-like terminal window.

Actual programming and code prototyping may now start in
the Virtual Machine with the PC as the target. This allows
fast and easy debugging of algorithms. The resulting source-
code can then be ported to the ARM Architecture by a simple
re-compile with the ARM tool chain. With the now obtained
proof that the algorithms work, there is enough free time to
learn the intricacies of DSP/BIOS-link [10].

3. DSP TEACHING EXAMPLES

Out of the large number of possible signal processing algo-
rithms taught, we selected a small set corresponding to our
lecture and to avoid negating the effect of "learning by do-
ing". A given task needs to be done in a restricted amount of
time, limiting the choices by the complexity of the theory
behind it and the necessary effort for the implementation. If it
is not possible to finish the task in time, the intended goal to
further the understanding of digital signal processing cannot
be reached.
 As a consequence we have a small, but growing catalogue of
example tasks, requiring not more than a BB and some ade-
quate audio source (microphone or electronic stethoscope):

Fig. 2: Physical setup of a BeagleBoard programming environment:
The screen in the background shows the DVI output of the boxed BB
in the center (arrow), here life audio stream and FFT results.

• life display of acquired audio signal (ARM core
only)

• life inversion and thresholding (e.g. ECG monitor)
• life convolution with a predefined kernel (simple

low pass filtering, e.g. speech analysis)
• life filtering (50 Hz notch filter, band pass, e.g.

remove power line noise)
• life spectral analysis by discrete fourier transform

(e.g. auscultation)
• life auto- or cross correlation of stereo signals (e.g.

intra-aural time difference)

More advanced and therefore under construction in longer
student projects are:

• life Hilbert transform and phase shifting (ambient
noise canceling)

• life empirical mode decomposition [11]
• life wavelet transform by the à-trous algorithm [12,

13] and by lifting [14]
• blind source separation of two audio channels [15]

[16]
• heart rate variability (needs a custom made physio-

logical amplifier board [3])

Any audio task setup is created using the BB‘s audio input
capabilities and a suitable microphone as a signal source and
a TFT display connected to the DVI output as a signal sink,
plotting the source and filtered signal (see Fig. 3). With this
approach it is possible to evaluate different algorithms in a
real-life signal processing scenario with a clearly visible link
between cause and effect. The design of the application is
kept simple and, to a certain degree, flexible. Data from the
audio-device may be obtained block-wise via ALSA (Ad-
vanced Linux Sound Architecture) [12] or JACK [13] with
the possibility to add further APIs, opening the application to
a wide variety of streaming data sources. Blocks of signal

Fig. 3: The diagram shows the signal path through the OMAP
following the reference framework 6 (RF6) processes. Incoming
audio data from the ARM is sent through the DSP/BIOS link to the
DSP, where processing is performed. Process results are then sent
back to the ARM for display and audio output [10].

data are then filtered directly on the ARM core or better
handed over to the DSP for this task.

Filtering is performed by implementing a simple discrete
convolution with a choice of predefined or in MATLAB de-
signed FIR filter kernels. Depending on the level of studies
this application may be further advanced by requesting IIR
filters to be designed and characterized e.g. in MATLAB
first.

After filtering the signal by applying the signal processing
algorithms in question, it is handed back to the ARM to a
plotting algorithm which renders the signal visible on the
screen. Optional audio output is performed via speakers or
headphones connected to the line-out jack on the BB.

To illustrate the teaching procedure, we present in the follow-
ing exemplary the teaching task of life audio filtering on the
DSP.

As stated above, the student has access to a working Beagle-
Board development environment (see Fig. 2) and an instruc-
tion manual. The instructions will guide the student through
the few steps to bring up the Virtual Machine and the Bea-
gleBoard online and enables him to compile an example
DSP/BIOS link application created specifically for the fol-
lowing task.

He is then familiarising himself with the capabilities of the
example application by learning from the audio data acquisi-
tion and plotting routines. With this example, he is executing
his first signal processing task, a simple sign inversion of the
signal values (see Fig. 4, second top trace).

The next independent step is to implement a „brute force“
convolution, convolving the signal with a given small kernel
(here a 16 sample rectangular signal). At this point the stu-
dent may experiment with the effect of different convolution-
kernels on the audio signal.

Fig. 4: Output screenshot of 1024 data points with (from top) life
signal, inverted signal, FFT of signal and a convolved signal.

To demonstrate performance limitations of the DSP hard-
ware, the next task is to increase the length of the
convolution-kernel until the hardware can not keep up with
the amount of incoming audio data anymore, displaying er-
roneous curves. As a follow-up the student is now requested
to perform the convolution in the Fourier domain. Thus he
has to utilize a discrete Fourier transform (see Fig. 4, second
from bottom) and its inverse such, that again the convolution
of the signal with the kernel is obtained.

Finally, the student runs the DFT based convolution of the
audio-signal with a kernel of increasing size, finding the
hardware limitations with this algorithm. The newly obtained
result may then be compared to the result of the previous
convolution algorithm.

4. CONCLUSIONS AND PRACTICAL USE

At the end of the lab class, the student has got first hand ex-
perience in programming DSP hardware, the effect of a spe-
cific signal processing algorithm on a live audio signal and
the practical impact of different algorithmic strategies of
digital signal processing.

At the time of this writing, several pairs of master students in
biomedical engineering at our institute are actively testing
above explained jump start to signal processing on the
OMAP3 based BeagleBoard. Although their experience is
not completely analysed, it is clear, that our approach with
Virtual Machines does speed up the learning curve on a digi-
tal signal processor significantly.

Of course, one could argue, that most of the above stated
teaching examples are introduced in MATLAB or Python as
well. However to have instructional algorithms run in real-
time on a dedicated and industrially used DSP hardware al-
most gives a physical impression to the student, which seems
more advantageous than plain programming. At the same
time students experience clearly the limitations of the tech-
nology and what to expect from these processors in real
world applications. But even more, the use of the Beagle-
Board produces a strong motivation to reflect on the other-
wise dry topics of academic signal processing and simply are
fun to use.

We look forward to expose our next term signal processing
students to this type of „learning by doing“.

5. ACKNOWLEDGEMENTS

We want to acknowledge valuable input and help from the
BeagleBoard community and Robert Owen from Texas In-

struments, Europe. This work is in part funded by the Ger-
man Research Ministry‘s grant „BiCIRTS“ 13N9190.

6. REFERENCES
1.
 Proakis, J.G. and D.G. Manolakis, Digital Signal Process-
ing. 4th ed. ed. 2007, Upper Saddle River, NJ: Pearson Education.
2.
 Lüke, H., Signalübertragung. 6. ed. 1995, Berlin: Sprin-
ger. 381.
3.
 Mankodiya, K., et al. Portable electrophysiologic moni-
toring based on the OMAP-family processors from a beginners
prospective. in submitted to DSP 2009. 2009. Santorini.
4.
 http://www.beagleboard.org, BeagleBoards Software
Reference Manual, Rev. B.5. 2008.
5.
 http://www.codeblocks.org/. Code::Blocks -The open
source, cross platform, free C++ IDE. . 2009 [cited 2009
2.3.2009].
6.
 http://www.eclipse.org/. Eclipse website: Open source
IDE. 2009 [cited 2009 2.3.2009].
7.
 http://www.codesourcery.com. Sourcery G++ light. 2009
[cited 2009 2.3.2009].
8.
 Camargos, F. and G. Girard. Virtualization of Linux serv-
ers. in Proceedings of the Linux Symposium 2008. 2008. Ottawa,
Ontario, Canada.
9.
 http://www.virtualbox.org. VirtualBox - a general-purpose
full virtualizer 2008 [cited 2009 2.3.2009].
10.
 Mullanix, T., et al., Reference Frameworks for eX-
pressDSP Software: RF6, A DSP/BIOS Link-Based GPP-DSP Sys-
tem, T.I. Inc., Editor. 2004.
11.
 Huang, N.E., et al., The empirical mode decomposition
and the Hilbert Spectrum for nonlinear and nonstationary time se-
ries analysis. Proceedings of the Royal Society London, 1998. Ser.
A(454): p. 903–95.
12.
 Dutillieux, P. An implementation of the algorithm `a trous
to compute the wavelet transform. in Wavelets: Time-Frequency
Methods and Phase Space. 1989. Marseille 1987: Springer.
13.
 Holschneider, M., et al. A real- time algorithm for signal
analysis with the help of the wavelet transform. in Wavelets: Time-
Frequency Methods and Phase Space. 1989. Marseille 1987: Sprin-
ger.
14.
 Sweldens, W. The lifting scheme: A new philosophy in
biorthogonal wavelet constructions. in Wavelet Applications in
Signal and Image Processing III. 1995: SPIE.
15.
 Mei, T., et al., Blind source separation based on time-
domain optimizations of a frequency-domain independence crite-
rion. IEEE Trans. Audio, Speech, and Language Processing, 2006.
14(6): p. 2075-2085.
16.
 Mazur, R. and A. Mertins. Reducing reverberation effects
in convolutive blind source separation. in European Signal Process-
ing Conference. 2006. Florence.

