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Abstract—Defective heart valves are often replaced by implants
in open-heart surgery. Both mechanical and biological implants are
available. Among biological implants, xenograft ones—i.e., valves
grafted from animals such as pigs, are widely used. Good im-
plants should exhibit certain typical anatomical and functional
characteristics to successfully replace the native tissue. Here, we
describe a video-based system for measuring quality parameters
of xenograft heart valve implants, including the area of the orifice
and the fluttering of the valves’ leaflets, i.e., their flaps (or cusps).
Our system employs automatic methods that provide a precise and
reproducible way to infer the quality of an implant. The automatic
analysis of both a valve’s orifice and the fluttering of its leaflets of-
fers a more comprehensive quality assessment than current, mostly
manual methods. We focus on valves with three leaflets, i.e., aortic,
pulmonary, and tricuspid valves.

Index Terms—Fluttering quantification, heart valve implants,
image analysis, quality measures.

I. INTRODUCTION

D EFICIENT and malfunctioning heart valves must be often
replaced in open-heart surgery to prevent a severe deterio-

ration of the patient’s health. Since 1996, there have been some
60 000 such interventions in the U.S. each year [25]. Clearly,
there is a major interest in the quality of these implants as this
is directly related to their life span and the occurrence of com-
plications for the patient.

Since 1950, some 80 types of implants have been developed,
comprising both mechanical and biological implants. Here, we
focus on biological ones. Depending on their origin, biological
implants are of three types: xenograft implants, which consist of
similar tissue collected from specially bred animals, most often
pigs; homograft implants, which consist of tissue from a de-
ceased person; and autograft implants, where, e.g., a patient’s
own pulmonary valve is used to replace the aortic valve and
another—usually homograft—implant replaces the pulmonary
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Fig. 1. (a) Stented xenograft implant, (b) stentless xenograft implant, and (c)
the diagram of our test setup.

valve. Xenograft implants are the most often used biological
implants. Biological implants can be distinguished into two dif-
ferent types: stented implants, where the valve is placed on
a support frame and stentless implants, without the support
frame [6], [24]. Examples are shown in Fig. 1. A normal human
heart has both valves with two and three leaflets. The valve in
Fig. 1(b) is a three-leaflet xenograft stentless implant and one
of those analyzed in this paper.

Medical studies show that implants do not by far reach the
reliability of native valves, mainly because they do not have
the autorepair abilities of native tissue. Thus, complications
reappear often after a certain period of time, eventually making a
new intervention necessary. To ensure that only the best implants
reach the patients, their characteristics are verified before they
are implanted.

There are two major quality criteria that characterize a heart
valve implant [7], [19], [20], [23].

1) The time-dependent area of the orifice from the moment
the valve opens until it closes. Here, we call the function
of orifice area over time the orifice curve. An orifice curve
is shown in Fig. 2.

2) The fluttering of the leaflets in the blood flow (see Fig. 3).
The quality of a valve is evaluated using a video sequence

showing an entire valve cycle, i.e., the time interval from the
moment the valve starts opening until it is completely closed.
We call such a movie a test sequence. Imaging is done by means
of a special test setup [23] shown in Fig. 1(c). From a reservoir
(1), a transparent fluid—usually water, which with respect to
the investigated valve properties behaves similarly to blood—
is transported through a disc valve (4) by a piston pump (2),
which is driven by a waveform-adapted cam plate (3). After
passing an input compliance (5), the fluid is pressed through
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Fig. 2. Orifice curve showing the evolution of the orifice area over the frame
index in a test sequence.

the inspected heart valve (11) into a visualization chamber (7)
located in another fluid reservoir (6). Pressure sensors (10) are
installed below and above the heart valve. Passing an aortic
compliance (9), the fluid reaches a vertical pipe of variable
length and flows back to the first reservoir. The heart valve is
illuminated by light sources (12) placed outside the fluid tank
(6), which is made from perspex. A black and white video
camera (13) takes images of the heart valve with 500 f/s and a
resolution of 480×420 pixels. The digitized images are stored
in a PC (14). Usually, a test sequence (see Fig. 2) has a duration
of some half a second, leading to approximately 250 frames.

Currently, for quality assessment, the orifice curve is mea-
sured manually [23]. To compute the opening area of a tricuspid
heart valve, the human operator has to mark the points at the
connections between leaflets and at the peak of each leaflet.
Also, by including the midpoint of the opening, one can de-
fine six triangles that approximate the area of the orifice of a
three-leaflet valve. For each analyzed heart valve, this proce-
dure, which neglects the rather curved boundary of the leaflets,
has to be repeated for some images properly chosen over the
test sequence. From these measurements, the orifice curve is
interpolated and the behavior of the implant is inferred. Even
for only a few images, this is a rather tedious job, and it clearly
returns imprecise results because it does not consider the entire
sequence.

During a typical test run, the fluttering is analyzed only visu-
ally by the operator if at all. In some special cases—related to
medical research rather than medical routine—the fluttering is
also analyzed. For this purpose, the bending deformation index
(BDI) [7] is again manually computed only for a few images.
The BDI is computed as the depth of a leaflet’s border divided
by its side [see Fig. 3(b)].

Here, we introduce novel methods for machine-vision-based
support of the quality assessment of xenograft heart valve im-
plants. We show how to measure the orifice area and the flutter-
ing of the leaflets automatically. This will allow for an improved
human-based quality control, as these measurements are more

Fig. 3. Examples of valves. (a) Without fluttering. (b) With fluttering. For the
fluttering valve, the BDI is computed as |BD|/|BC |.

precise and reproducible. Also, an analysis of fluttering becomes
available in medical routine now. Such measurements may also
represent the basis for fully automated analysis, which can be
conducted fast and for a large number of valves, which is clearly
interesting for companies producing such implants. This study
draws on previously published conference papers [4], [10], but
additionally describes more recent results for an extended anal-
ysis of fluttering.

II. MEASURING ORIFICE AREA

To obtain an orifice curve, the orifice needs to be segmented
in each image of a test sequence. In our test setup, the orifice
appears dark when the valve opens, while the valve itself is
bright. Therefore, a straightforward approach to segmentation
is thresholding [10]. However, threshold-based methods usually
fail because the orifice does not exhibit sufficiently homoge-
neous gray levels. The orifice is defined by the borders of the
leaflets, it is transparent, and it will thus assume the gray levels
of the structures against which it is imaged. Practice shows that
it is rather difficult to achieve a homogeneous background to
project the orifice against.

For a better segmentation, one should thus start from the
leaflets and select the orifice as defined by their borders—i.e.,
as the area enclosed within these borders. The border-shaped
curves cannot be described a priori as they have a large vari-
ability, therefore snakes [15] and related techniques [3], [17]
are well-suited to track them over the analyzed sequence [4].
For our purposes, the use of the standard snakes as introduced
in [15] appears perfectly justified, because we do not encounter
any changes in the topology of the sought boundary curve—-
neither over time for a given valve nor over different valves—as
there is always only one orifice to segment in each analyzed
image.

A. Orifice Segmentation by Snakes

Active contours or snakes are highly adaptable models and
therefore widely used in the analysis of medical images [18],
[22], [28]. A snake is a curve v(s) = [x(s), y(s)], s ∈ [0, 1],
evolving over the spatial domain of an image under the influence
of forces derived from internal and external energy terms to a
position of minimum energy.

Authorized licensed use limited to: Alfred Mertins. Downloaded on February 5, 2010 at 05:30 from IEEE Xplore.  Restrictions apply. 



2870 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 12, DECEMBER 2009

The internal energy term Eint governs the behavior of the
snake during its evolution. It is defined such that it penalizes
stretching and bending, thus encouraging smooth solutions

Eint =
∫ 1

0

1
2

(
α(s)

∣∣∣∣∂v(s)
∂s

∣∣∣∣
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2
)

ds. (1)

The first-order term controls stretching and the second-order
term bending. The weights α(s) and β(s) adjust the influence
of the two terms and thus favor a specific snake behavior. We
have chosen them to be constant over the snake: α(s) = α and
β(s) = β.

The external energy term Eext is computed from the image
such that it reaches a minimum over the sought image features

Eext =
∫ 1

0
P (v(s))ds (2)

where the potential energy function P (x(s), y(s)) can be spec-
ified as

P (x, y) = −|∇(gσ (x, y) ∗ i(x, y))|2 (3)

to attract the snake toward edges. In this case, gσ (x, y) is a 2-D
Gaussian kernel, which is convolved with the image i(x, y) to
extend the attraction range of the edges.

The snake energy functional can then be written as E =
Eint + Eext . The snake will evolve to a position where E
is at least locally minimized. The minimization problem is
solved by setting to zero the corresponding Euler–Lagrange
equation. Thus, one obtains the force formulation of a snake:
Fint + Fext = 0.

As an external force for the snake, we use a gradient vector
flow (GVF) [26], [27], which has an improved attraction range
and concavity behavior in comparison to other external forces
[14]. A GVF G(x, y) = (u(x, y), v(x, y)) is a static external
force field. If f(x, y) = −P (x, y), then G is defined as the
vector field that minimizes the energy functional
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with µ being a parameter. Consequently, G is equal to
−∇P (x, y) when |∇P (x, y)| is large. Otherwise, it is gov-
erned by its own partial derivatives, thus discouraging abrupt
changes in the external energy and forcing the field to be slowly
varying in homogeneous regions, thereby greatly extending the
attraction range. The optimal position of the snake is sought by
gradient descent methods.

The snake has to be initialized automatically and only after
the valve has opened wide enough for the orifice to appear.
We define leaflet baselines as the lines connecting each of the
anchor points. Anchor points are the points where two leaflets
meet [see Fig. 4(a)]. Baselines and anchor points are estimated
automatically. We initialize the snake from the base lines. After
initialization, the snake will track the outline of the leaflets until
the valve is almost closed.

Fig. 4. (a) Initialization of the snake from the baselines. (b) Result after
convergence was achieved.

Fig. 5. Automatic detection of anchor points: (a) original image with over-
lay of the detected circular outline, (b) segmented orifice with centerlines (in
dark gray), (c) centerlines (thick dark gray), centerline rays (thin white), their
intersections with the circular outline (white points), and minimum-distance
points (with dark gray circle) computed as those intersection points closest to
the centerlines, and (d) final result.

1) Segmentation of Supportive Image Items: To ensure a suc-
cessful segmentation of the orifice, we have adapted our algo-
rithms to explicitly use available prior knowledge. Toward this
end, we segment several image items: the circular outline of the
valve and the anchor points of the leaflets.

a) Segmentation of circular outline: The camera observes
the valve through a cylindrical tube using a normal imaging
optical system [13]. Thus, the inner wall of the tube is also
observable and delineates the contour of the valve. We call this
the circular outline of the valve.

We segment the circular outline by the Hough transform for
circles [11], [12] on the image obtained after edge detection [2].
As the approximate position of the center of this circle and the
approximate size of its radius are known a priori, the search in
the Hough space is very fast. We search the coordinates of the
center in a region of interest (ROI) of size 15 pixels centered at
the image center and the radius on an interval of the same size
centered at the value 150. The center and radius of the outline
circle are then estimated by taking the mean over several images.
This defines a circular ROI where only the valve is visible. An
example is shown in Fig. 5(a).

b) Automatic determination of anchor points: To find the
anchor points, we use the first 11 frames after the valve has
opened, but before the valve is completely open. For these
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images, we can safely assume that the orifice is sufficiently
small to exhibit a narrow and specific gray level representa-
tion to segment it by thresholding. One such example is shown
in Fig. 5(a) and the corresponding segmentation is depicted in
Fig. 5(b).

To find the lines where each two leaflets meet (called center-
lines in the following), the orifice-segmentation result is dilated
and then thinned using a circular structuring element. The di-
lation is necessary to eliminate artifacts at the borders of the
segmented orifice, such that only the centerlines remain after
thinning. The centerlines are shown in dark gray in Fig. 5(b).
The centerlines are used to extrapolate the centerline rays by
means of the Hough transform for lines. The centerline rays are
shown in white in Fig. 5(c). For each centerline ray in image m
(with m = 1, . . . , 11), we then find the points where it intersects
the circular outline. Subsequently, the distances from each in-
tersection point to all centerline points along the corresponding
ray are computed and only the minimum distance is considered.
We thus have two such minima per ray. An anchor point xm

AP i
,

corresponding to the ith centerline (i = 1, . . . , 3 for tricuspid
valves) in image m is given by the intersection point corre-
sponding to the smallest of the two minima. The centerlines,
the centerline rays, their intersection points with the circular
outline, and the anchor points are shown in Fig. 5(c).

The final anchor points xAP i
are determined by taking the

mean (along the arc) of the corresponding anchor points for the
11 frames. This is shown in Fig. 5(d).

2) Snake initialization: The active contours need to be ini-
tialized after the valve starts to open and once enough orifice
is visible. Initialization is done automatically, starting from the
baselines of the leaflets. The initialization from the baseline has
the additional advantage of placing snake point elements (often
called snakels) already in the regions where the borders of the
leaflets would otherwise be difficult to find because they are
not well defined—they are imaged, e.g., against light parts of
the tube seen through the orifice and are themselves bright [see
Fig. 3(a)]. An example of the baseline initialization is shown in
Fig. 4(a).

The snake tracks the outline of the leaflets only in images
where this is well observable. Therefore, the initialization takes
place only once the valve has wide opened sufficiently. We halt
the snake at the end of the sequence when the opening is no
longer large enough. The initialization from the baseline is done
only relatively late after the valve has opened, such that the
baselines fall in the attraction range of the leaflets. To determine
when to initialize the snake, we extract the feature Υ, which is
the mean of the gray levels i(x, y) within the circle C inscribed
in the triangle given by the base lines

Υ =
1
N

∑
[x,y ]∈C

i(x, y) (5)

with N the number of pixels in C.
If the value of this feature is below a certain threshold t, we

conclude that the valve has opened (o) and initialize the snake.
At the end of the sequence, the snake-based tracking is halted as
soon as the mean value is above the threshold, and we conclude

Fig. 6. Segmentation of the orifice by active contours: (a) without and (b) and
with attractor.

Fig. 7. Construction of attractors: (a) dilated circular outline (in gray) with
circular selection surfaces around each anchor point (in white) and (b) resulting
semisynthetic image.

that the valve has closed (c). We use the following decision rule:

Decide c if Υ > t; otherwise, decide o. (6)

The threshold t is chosen as the median of the center mean
values recorded over the first 25 frames of a sequence.

3) Snake-Based Tracking of Leaflet Border: After the snake
has converged in the initialization frame, its position in the past
image is used as initialization for the next one, etc.

During tracking, the snake cannot follow the valve orifice
in regions of small contrast, i.e., where portions of the tube
behind the valve are visible through the opening. This is shown
in Fig. 6(a). We therefore introduce attractors for the snake
around the anchor points such that the snake tracks the borders
of the leaflets, as in the example shown in Fig. 6(b). By means
of the attractors, we augment the standard snakes with explicit
application-specific prior knowledge. While there are also other
possibilities to formulate our problem within an active contours
framework, such as the introduction of shape priors [5], [8], [16],
the one proposed here, using attractors and anchor points that
have an explicit physical meaning, is transparent to a user who
may not be an expert in image processing, and provides marker
points whose consistency with the heart valve can be checked
at a glance.

To construct the attractors, we use the circular outline. The
circular outline is first dilated slightly—by a disk structuring
element with a radius of nine pixels—starting from its initial
one pixel width, to increase its attraction range. Then, parts of
the dilated outline OAPj

around each anchor point xAPj
are

selected. The selection includes those parts found in a circle of
radius 125 pixels around each anchor point. The radius of the
circle is related to the maximum distance between leaflets along
the circular outline during the second phase of a valve cycle.
This is shown in Fig. 7(a). Finally, the OAPj

are subtracted

Authorized licensed use limited to: Alfred Mertins. Downloaded on February 5, 2010 at 05:30 from IEEE Xplore.  Restrictions apply. 



2872 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 12, DECEMBER 2009

Fig. 8. (a) and (b) Influence of the attractor’s size on the snake results: snake-
based orifice segmentation for two frames using the entire circular-outline as
attractor. (c) and (d) Same images using only the portions of the circular outline
around the anchor points as attractor.

from the original image i(x, y) such that

E[i(x, y)|(x, y) ∈ OAPj
] = D (7)

for j = 1, 2, 3, with E the expectation operator estimated via
the arithmetic mean and D the mean gray level value in the
orifice. We thus obtain a semisynthetic image that is then used
to compute the GVF. An example is shown in Fig. 7(b).

In (7), we use the mean gray level D in the orifice, such
that the snake can leave the attractors under the influence of the
internal energy term once the valve starts to close. The orifice
gray levels are obtained from the unsupervised segmentation of
the global histogram of the analyzed sequence. The global his-
togram includes the gray levels of the valve region as delineated
by the circular outline in all frames of a test sequence [10].

We do not use the entire circular outline as one attractor
because this may fail when one of the leaflets can no longer
be observed when traveling outside the circular outline. The
snake will then possibly remain there even when the valve starts
closing. Such an example is shown in Fig. 8.

B. Orifice Curve

On a test sequence, the orifice curve is computed mainly by
the snake, with the exception of some frames in the beginning
and at the end of the sequence, and it is used to measure some
quality criteria of the analyzed valve.

1) Quality Criteria Based on Orifice Curve: There are two
quality criteria that can be measured from orifice curves. The
first is the maximum value and the second is the dynamic evolu-
tion of the orifice area. For a healthy valve, the maximum value
has to be within a certain predefined interval such that a proper
blood flow is obtained under normal physiological heart cycle
conditions. The dynamic evolution of a valve cycle has to ex-
hibit three phases and the orifice curve of a healthy valve should
accordingly show three regions. The first phase is the rapid in-
crease phase, when the valve opens and the orifice area increases
rapidly to its maximum value. During the second phase, the area
of the orifice should decrease slowly, the valve being open now.
Finally, in the third phase, the area decreases sharply, but with
a smaller absolute slope than during the opening phase until the
valve closes completely. This typical behavior is illustrated in
Fig. 2.

The maximum value Ω of the valve orifice is read directly
from the orifice curve and expressed in pixels. If the imag-
ing geometry is known, the maximum value can be directly
transformed into metric units. Equivalently, and to avoid the

additional effort of calibrating the imaging geometry, we relate
the maximum value as measured in pixels to the area ACO en-
closed by the circle describing the circular outline, which, as
Fig. 5 shows, is computed for every sequence. As the absolute
area corresponding to ACO is fixed in our test bed, the ratio
Ω = Ω/ACO is equivalent to calculating Ω in, say, centimeters
square even when the imaging geometry should slightly change
from valve to valve.

The dynamic behavior of the valve during the three phases Γi ,
i = 1, . . . , 3, can be measured by a measure SΓ i

that is based on
the slope of the line interpolated from the orifice-curve values
in each corresponding region. We describe how to segment the
three orifice-curve regions corresponding to the three phases
of the valve cycle in Section III-A1. SΓ i

is computed as the
normalized angle of the slope. The angle takes values in the
interval [−π/2, π/2]. To obtain SΓ i

∈ [−1, 1], the slope angle
is normalized by π/2. Thus, the extreme case of a vertically
increasing slope would have SΓ i

= 1, a horizontal slope SΓ i
=

0, and a vertically decreasing slope SΓ i
= −1.

2) Practical Computation of Orifice Curves: To analyze an
entire sequence, we use a global threshold to segment the ori-
fice in those images at the beginning and the end of a sequence,
where the snake cannot be properly defined. The global thresh-
old is a fixed threshold, which remains the same for all images
of the sequence. As shown in [4], this threshold is set on the
global histogram by a likelihood ratio test, where the orifice and
background gray level conditional probability density functions
(pdfs) are estimated using mixture models [9].

One can be reasonably certain that a gray level threshold
segments the orifice properly in the initial and end phases of
the valve cycle, because it can be then safely assumed that the
orifice—due to its small size—is imaged against an uniform
background. Even though the thresholding method might fail in
some rare cases, most of the sequence will still be correctly seg-
mented by the snake, as the latter is initialized from the leaflet
baseline and not from the thresholding result. The described
combination between gray level threshold and snake success-
fully segments the orifice over an entire valve cycle.

III. MEASURING LEAFLET FLUTTERING

Without further physical experiments, we hypothesize from
our data that there are two types of fluttering: resonance flut-
tering and jerky fluttering. Valves may exhibit both types of
fluttering or any of the two alone. A good implant should not
exhibit any jerky fluttering.

The effects of the fluttering can be observed in both time
and space. Leaflets of a fluttering valve will exhibit a jerky
motion, somewhat similar to a flag moving in the wind. At the
same time, when they move during the second phase of a valve
cycle, their borders will appear with an irregular form as they
bend and wriggle in a plane approximately perpendicular to the
image plane. An implant that exhibits such leaflet deformation
is shown in Fig. 3(b).

The analysis of fluttering includes detection and quantifica-
tion. Current fluttering measures, like the BDI, are space based
as they assess how wriggled a leaflet is at a certain time instance.

Authorized licensed use limited to: Alfred Mertins. Downloaded on February 5, 2010 at 05:30 from IEEE Xplore.  Restrictions apply. 



CONDURACHE et al.: VIDEO-BASED MEASURING OF QUALITY PARAMETERS FOR TRICUSPID XENOGRAFT 2873

Conversely, the human specialist takes into consideration both
time and space aspects, when evaluating the fluttering of a valve,
as he also observes the evolution of the valve’s leaflets in the
analyzed test sequence. We describe how to detect, and quantify
the fluttering in the time domain on the orifice curves and in the
space domain in each image. We also describe methods, which
take into consideration information from both time and space
and ultimately conclude, based on the results we have obtained
that these represent the best way to measure the semantically
important characteristics of fluttering.

A. Basics of Fluttering

Assuming that the leaflets are elastic, the flow of liquid
through the valve is usually turbulent and can be thus modeled
by a wideband noise signal that excites them. If the excitation
signal also contains sufficiently large components of one of the
resonance frequencies of the leaflets, these will start to vibrate as
a whole without major changes along the borders of the leaflets,
and the orifice will retain a neat star-like form [see Fig. 3(a)].
Such resonance fluttering has arguably a limited impact on the
quality of a valve, as in this case while vibrating, and the leaflets
move across their virtual baseline, i.e., the line connecting the
two end points of a leaflet’s border [see Fig. 4(a)], which is
natural for them. The jerky fluttering is characteristic for valves
with poor elastic properties, whose leaflets have no resonance
frequencies. In this case, the leaflets also bend along lines per-
pendicular to the baseline [see, e.g., the right and the lower
leaflet of the valve implant shown in Fig. 3(b)] and their borders,
and hence, the borders of the orifice now appear wriggled. This
type of fluttering causes major stress on the leaflets—thereby
reducing the longtime durability of the implant—and influences
the flow of blood strongly—with negative consequences for the
health of the patient receiving the transplant. Jerky fluttering is
thus a major issue in heart valve quality assessment [24].

We seek to quantify only jerky fluttering, which is, from now
on, simply called fluttering, and we intend to measure fluttering
for each leaflet. We measure fluttering only in the second phase
of a valve cycle because, during opening and closing of the
valve, the leaflets are tensed and do not flutter.

1) Segmentation of Second Phase of a Valve Cycle: The sec-
ond phase of a valve cycle can be segmented using methods
similar to those we developed earlier to analyze the inflow,
presence, and outflow of contrast agent in sequences of coro-
nary angiograms [1]. There, we have described how to segment
a set of ordered observations S = {s1 , . . . , sn} that increase
in an initial phase, then remain approximately constant in an
intermediary phase only to decrease in the final phase into
three subsets: si , i = 1, 2, 3, with

⋃3
j=1 sj = S. The subsets

correspond to two classes C1 and C2 : C1 represents the initial
and final phases {s1 , s3}, while C2 represents the intermediary
phase {s2}. Each observation receives a label qk ∈ {C1 , C2},
k = 1, . . . , n. The set of orifice areas over the time axis during
a valve cycle is also such an ordered set S and can be therefore
segmented in the same way. Clearly, the second phase of a valve
cycle corresponds to C2 .

A valid segmentation must provide a coherent second phase.
A coherent second phase implies that it is unique and connected,
with no “holes” in it. Holes appear when the succession of
samples assigned to C2 is interrupted by some C1 samples
followed by more C2 samples. Assuming that the segmentation
complies with the coherence condition, a small number of false
positives means that there are few to none C1 samples falsely
assigned to C2 only in the beginning and at the end of the second
phase.

We seek the optimum segmentation subject to the maximum a
posterior (MAP) criterion based on a two-state hidden Markov
model (HMM) and subject to the aforementioned coherence
constraint. Denoting the state sequence by Q = {q1 , . . . , qn},
we try to find Q such that Pr(Q|S) is maximized. The con-
ditional pdfs of the observations conditioned on the states C1
and C2 are modeled by normal distributions. To estimate their
parameters, the orifice curve is thresholded using Otsu’s algo-
rithm [21], such that separability between the classes is maxi-
mized. This global thresholding breaks the coherency constraint
and thus it does not provide a valid segmentation; however,
the result suffices to estimate the parameters of the pdfs. The
sought coherence is reflected in a state transition matrix A,
with the transition probabilities such that staying in the current
state is strongly encouraged. Empirically, we have determined
A to be

A =
{

0.9 0.1
0.1 0.9

}
. (8)

A consequence of the coherence constraint is that there are

only M =
(

N
2

)
different possibilities to segment a curve with

N points into three coherent regions. As the typical length of
an analyzed sequence is N = 170 [counting from the moment
the valve starts to open and until it is completely closed, see
Fig. 11(a)–(e)], there are only M = 14 365 segmentation can-
didates to be tested by the MAP criterion. A full search over
all valid segmentation results is therefore practically feasible.
Results are shown in Fig. 11.

B. Fluttering Analysis in Time: Fluttering Measures Computed
From Orifice Curve

A time-based analysis of fluttering seeks to quantify the “jerk-
iness” in the motion of the leaflets. The motion of the leaflets
directly influences the area of the orifice, and hence fluttering
can be measured on the orifice curves.

To conduct an analysis of the fluttering based on the orifice
curves, we need to ensure that changes of the orifice area are
generated only by the opening and closing of the valve. The
snake-based approach practically fulfills this condition. Snake-
based orifice curves reflect the true evolution of the orifice.

1) Detection of Fluttering: Fluttering causes the area of the
orifice to change abruptly and often over time as the leaflets
move erratically. Thus, fluttering can be detected on the orifice
curves as a high-frequency signal superimposed on the portion
of the curve corresponding to the second phase of a valve cycle
(see the results in Fig. 11).
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2) Quantification of Fluttering: After segmenting the sec-
ond phase of a valve cycle, the 1-D signal xoc(t) given by the
corresponding portion of the orifice curve is used to compute
a measure of fluttering. For this purpose, we use the discrete
Fourier transform (DFT). However, the DFT yields artifacts due
to the assumed periodic repetition of the time signal. The arti-
facts are due to the trend present in xoc(t) as a consequence of
the slowly decreasing orifice area during the second phase of
a valve cycle. To eliminate them, we compensate for the trend
before computing the DFT. The trend xoc(t) is approximated
by a second-order polynomial and then subtracted from xoc(t)
to obtain the trend-free signal x̂oc(t). The time-based fluttering
measure denoted as Φoc is computed by the mean energy in the
high-pass filtered x̂oc(t)

Φoc =
1
2π

(∫ π

−π

|X̂oc(ω)|2dω −
∫ ωo c

−ωo c

|X̂oc(ω)|2dω

)
(9)

with X̂oc(ω) the Fourier transform of x̂oc(t). The high pass
eliminates frequency components related to low-frequency res-
onance fluttering. The band-edge frequency ωoc is established
empirically, as described in Section III-E. Experiments show
that the more fluttering, the larger the measure.

C. Fluttering Analysis in Space: Fluttering Measures Based on
Deformation of Leaflets

A space-based analysis of the fluttering seeks to measure
the irregularity of the shape of the leaflets’ borders. As shown
in Section III-A, the irregularity of a leaflet border is related
to flutter. The border of a leaflet is obtained directly by ori-
fice area segmentation. The border of the orifice of a tricus-
pid heart valve usually exhibits three regions of relatively high
curvature—one at each anchor point—not related to the flut-
tering; therefore, we need to analyze each leaflet alone. An
additional reason for analyzing each leaflet alone is that we
want to characterize each leaflet independently. For this pur-
pose, we need to segment the border of each leaflet on the orifice
border.

1) Segmentation of a Leaflet’s Border: The valve orifice is
defined by the borders of the leaflets that can be segmented on
the orifice border. For this purpose, we use the anchor points that
have already been computed. As the fluttering is analyzed only
over the second phase of a valve cycle, i.e., when the orifice is
large, these will be situated always on the border of the orifice
and will thus define the borders of each leaflet. For a robust
segmentation of the leaflets’ borders, we use the anchor points
together with the center of the valve to divide the image into
three regions. These regions give then an implicit partition of the
orifice border into curves corresponding to each leaflet. To make
sure that the analysis concentrates only on leaflet borders and not
on other artifacts—like the circular outline—after segmenting
the leaflet border, we keep only the two-thirds around its center
and ignore the rest [see Fig. 9(a) and (b)].

2) Detection and Quantification of Fluttering: An irregular
border curve will contain relatively large amounts of energy in
the high-frequency part of its spectrum. We therefore introduce

Fig. 9. Computation of time-space images. (a) Segmentation of the leaflet’s
border (in white and gray) over the baseline stretched between two anchor
points and selection of the central part (in white). (b) Corresponding 1-D-signal
obtained by sampling the leaflet’s border over the baseline. (c) Time-space
image obtained by gathering on the columns all sampled leaflet borders from
the second phase of a valve cycle.

a measure to quantify the irregularity of the border, which is
related to the energy in the high-frequency part of the spectrum.

The measure is computed in each image acquired during the
second phase of a valve cycle. We measure the fluttering for
each leaflet by computing the mean of its measure over the
entire sequence. The maximum over all leaflets then gives the
fluttering for the analyzed valve.

a) Energy-based measure: We measure the fluttering by
the high-frequency energy content of the 1-D signal xbv (t) given
by the border of the leaflet. To analyze the fluttering alone, we
first eliminate the DC component as well as the low-frequency
part of the spectrum, which contains frequencies linked to the
natural shape of the leaflet. The energy in the remaining com-
ponents is the fluttering measure for the analyzed leaflet in a
certain image of the test sequence.

The high-pass filtering takes place in the Fourier domain by
setting to zero all spectral components up to the pass frequency
ωbv . The space-based fluttering measure denoted as Φbv is com-
puted as follows:

Φbv =
1
2π

(∫ π

−π

|Xbv (ω)|2dω −
∫ ωb v

−ωb v

|Xbv (ω)|2dω

)
(10)

with Xbv (ω) the Fourier transform of xbv (t). We choose ωbv

empirically, as described in Section III-E. Again, we use the
DFT to compute the measure; however, due to the particu-
lar form of the leaflet, the artifacts introduced now usually
have lower frequencies and are eliminated by the high-pass
filter.

D. Fluttering Measure Computed From Time-Space Images

The fluttering is a time property of leaflets that is also re-
lated to the appearance of the leaflets’ borders in each image,
i.e., to space. We therefore measure here fluttering spatiotem-
porally. These measurements take place on each leaflet alone.
The leaflets are segmented from the orifice, as described in
Section III-C1.

1) Time-Space Images: To compute a time-space image,
each leaflet-border curve is first sampled over the baseline link-
ing the two corresponding anchor points [see Fig. 9(a)]. We then
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Fig. 10. Elimination of the trend present in the time space due to the natural
tendency of a valve to close. (a) Time-space images of a nonfluttering leaflet,
(b) trend-free times-space image of the same leaflet, (c) time-space images of a
fluttering leaflet, and (d) its trend-free times-space image.

keep only two thirds of the leaflet measured over the baseline,
thus obtaining for each image a 1-D signal of standard length
[see Fig. 9(b)]. Finally, these signals taken from all images
recorded during the second phase of a valve cycle are collected
into the columns of a time-space image. An example is shown
in Fig. 9(c).

Clearly, such images capture both the time evolution of the
leaflets and the form of the leaflet border at each time instance.
It also thus contains information about how the pattern of a
leaflet’s border changes in time and thus reflects the way a
human observer would analyze the valve.

2) Measure of Fluttering: The time-space fluttering measure
for a leaflet, denoted as Φts , is related to the mean high-pass
energy in such time-space images its(x, y). The maximum over
all leaflets then yields a fluttering measure for an entire sequence.

The computation of Φts is done in the frequency domain
by the DFT. Similar to the case of the time-based fluttering
measure in Section III-B, we also have high-frequency artifacts
due to the trend introduced in the time-space images by the
natural tendency of the valve to close during the second phase
of a valve cycle. This trend is easily observable in time-space
images of good leaflets. The example in Fig. 10(a) clearly shows
such a trend.

The trend-related artifacts have a negative influence on our
measure and decrease its sensitivity. To compensate for this, we
estimate the trend and subtract it from the analyzed images. For
this purpose, we take the spatial mean in the time-space images
and thus obtain a time-varying curve whose values we approxi-
mate by a second-order polynomial. We then build its(x, y) by
repeating along the space axis the values the polynomial takes
at the respective time instance. A trend-free time-space image is
obtained as ĩts(x, y) = its(x, y) − its(x, y). Fig. 10(b) and (d)
shows two examples.

TABLE I
TEST SEQUENCES IN DATABASE

Φts is computed from ĩts(x, y) by high-pass filtering

Φts =
1

4π2

∫ π

−π

∫ π

−π

|Ĩts(ω1 , ω2)|2dω1dω2

− 1
4π2

∫ ωt s 1

−ωt s 1

∫ ωt s 2

−ωt s 2

|Ĩts(ω1 , ω2))|2dω1dω2 (11)

with Ĩts((ω1 , ω2)) the Fourier transform of ĩts(x, y). The pass
frequencies of the high-pass filter ωts1 and ωts2 are empirically
set for both dimensions, as described in Section III-E. The high-
pass filter then eliminates the low-frequency resonance vibration
and the low-frequency components introduced by the natural
shape of a leaflet.

E. Parameter Selection for Measuring Fluttering

Irrespective of the approach used, the fluttering is measured
as the energy of a signal in the high-pass part of its spectrum.
For this purpose, we use high-pass filters whose band edges
are established empirically, using as ground truth a set of se-
quences obtained from valves whose fluttering characteristics
were known beforehand. The band edges for each of the pro-
posed fluttering estimators were modified until we obtained
measurements that reflected our qualitative prior knowledge on
the fluttering behavior of the ground truth sequences. Toward
this end, the sequences were graded from 0 to 1, with one
standing for the largest fluttering. We then computed for each
band edge—in an interval from 0 to π/2—and for every se-
quence, our respective fluttering measure and scaled the results
to [0, 1]. Finally, we computed the mean square error between the
grades and the measures. The band edges proposed are those for
which this error was minimal. The following parameters were
found as optimal: ωoc = π/4 in (9), ωbv = π/10 in (10), and
ωts1 = ωts2 = π/20 in (11).

IV. EXPERIMENTS AND DISCUSSION

We have tested the algorithms proposed here on five test
sequences chosen such that they cover—to the best of our
knowledge to date—the entire spectrum of problems encoun-
tered when analyzing valves. All sequences show valves with
three leaflets. They represent our ground truth reference and are
described in Table I. The fluttering labels were assigned by a
human expert.

A test sequence has usually some 170 frames and can go
up to 250 frames. For such data, we obtain a complete set of
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Fig. 11. Orifice curves computed using snakes. The dots mark the beginning
and end of the second phase of a valve cycle.

TABLE II
MAXIMUM VALUE OF ORIFICE Ω MEASURED IN PIXELS, MAXIMUM RELATIVE

TO CIRCULAR OUTLINE Ω, AND NORMALIZED SLOPE ANGLE SΓ IN EACH OF

THREE CURVE REGIONS Γi , i = 1, . . . , 3, FOR SEQUENCES IN DATABASE

measurements after approximately 25 min under MATLAB on
a P4 machine running at 2.3 GHz.

A. Measurements Related to Orifice Area

The orifice area is obtained as the area enclosed by the snake
and its edge is directly obtained from the snake. Fig. 11 shows
orifice curves for each of the sequences in the database. These
orifice curves correspond to the expectations of a human expert.

The result of the segmentation depends on the attraction range
of the external energy and also on the way the energy is defined
around the anchor points. The attractors make sure that the ex-
ternal energy field converges properly there. A GVF offers a
large attraction range and a good convergence in regions of high
border curvature [27]. Moreover, since the images are acquired
at high frame rate, the distance traveled by the leaflets between
two consecutive images is small enough such that the converged
snake from the previous image is practically always in the at-
traction sink of the leaflet borders in the current image. On the
tested sequences, the snake was robust enough to always track
the borders. Should the snake fail, one may improve the seg-
mentation by going backward on the time axis, as the processing
is done offline.

The results for the valves examined are given in Table II.
The second and third columns show the maximum value of
the orifice area in pixels as well as the normalized maximum
value, while the last three columns show the relative angles of
the slopes of the orifice curves in each of the three regions, as
described in Section II-B1. To make this measure independent of
the maximum value, the values of each orifice curve were first

TABLE III
FLUTTERING MEASURED BY DIFFERENT METHODS FOR SEQUENCES

IN OUR DATABASE

normalized to the interval [0, 1]. They correlate well with the
orifice area curves, showing a steep increase in the first region
Γ1 , a slow decrease during Γ2 , and a steep decrease during Γ3 .

B. Fluttering Detection and Quantification

Fluttering is analyzed only during the second phase of a valve
cycle, i.e., for sequence A, between frames 42 and 152, for
sequence B between frames 41 and 158, for sequence C between
frames 18 and 117, for sequence D between frames 15 and 113,
and for sequence E between frames 47 and 143.

In Section III, we have described three approaches to de-
tect and quantify fluttering. The results obtained by each of
them are shown in Table III. They are normalized to the in-
terval [0, 1] with one corresponding to a valve characterized
by extremely strong fluttering. This worst case valve is a hy-
pothetical reference model, whose leaflets are all identical and
exhibit a BDI of 0.95. The worst natural valves do not exceed
a BDI of 0.8 [7], [20]. In the time domain, each leaflet of the
worst case valve flutters at 60 Hz. This corresponds to some
15 oscillations during the second phase of a valve cycle, with
an amplitude comparable to that of a natural valve. Also, the
length of the border of a leaflet is comparable to that of a natural
leaflet. For the worst-case valve, Φoc = 466, Φbvi

= 5812, and
Φtsi

= 1786 × 103 with i = 1, 2, 3.
The simplest and fastest way to measure fluttering for an en-

tire sequence is by a frequency analysis of the orifice curves.
As shown in Table III, the results achieved by the time-based
measure correlate well with the test-sequence properties refer-
enced in Table I. However, there is no possibility to measure the
fluttering of each leaflet of the valve.

Practically, a contorted border shape which varies in time is
an indication of fluttering for the respective valve. Thus, the
shape of the leaflet’s border is related to fluttering. However,
one could theoretically observe a valve whose leaflets’ borders
have a contorted shape, but this shape does not change in time.
Such a valve is not considered to flutter.

The space-based measure returns results that do correlate with
the ground truth. This may be also seen as a confirmation of the
fact that in the sequences from our database, an irregular pattern
of the border of a leaflet implies that the leaflet flutters. In this
case, each leaflet can be measured, but one cannot differentiate
between valves that maintain the pattern of their borders and
those that do not.

Time-space images can be used to characterize both the time
and space evolution of a leaflet, and therefore can additionally
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Fig. 12. Time-space image for the three leaflets of sequence C with the cor-
responding fluttering measure (F). (a) F = 0.039. (b) F = 0.119. (c) F =
0.041.

differentiate between valves that keep the pattern of their borders
and those that do not. An example is shown in Fig. 12. These
results do correlate very well with the test-sequence properties
referenced in Table I. Measures based on time-space images
reflect the way a human expert would evaluate the fluttering of
a valve, i.e., by taking into consideration both time and space
aspects.

All methods proposed here return results, which are in agree-
ment with our ground truth. Resonance fluttering can be mea-
sured mainly by time-related measures. As it can be seen from
Table I, valves with low to no flutter usually exhibit high-
frequency resonance fluttering, but of very low amplitude, such
that they do not influence neither the time-based nor the time-
space-based fluttering measures practically.

Time-based measures are fast to compute, but they cannot re-
turn information for each leaflet alone. Space-based measures,
on the other hand, measure only a consequence of the flutter-
ing, namely, the irregular shape of the border of the leaflets.
A time-space image offers the most information on all aspects
of fluttering and can also be computed for each leaflet alone.
Therefore, we conclude that measuring the fluttering by means
of time-space images is the best way, as it offers the largest
amount of information and thus enables an improved analysis
in comparison to the other methods.

V. CONCLUSION

We have described methods for the automatic computation of
quality measures for heart valves. The input image sequences
are acquired by a specially designed test bed that emulates phys-
iological blood flow. These image sequences show one entire
valve cycle from the moment the valve opens until it closes.
While current manual analysis of these image data only focuses
on measuring the maximum orifice area, our approach addition-
ally captures the dynamic behavior of the orifice area during the
entire valve cycle, and summarizes this into three measures char-
acterizing the valve opening phase, the open phase, and the clos-
ing phase. Moreover, while currently, the phenomenon of leaflet
fluttering is mainly assessed visually, we have also provided
criteria to assess fluttering, with the time-space based methods
being most meaningful. These criteria are normalized by a hy-
pothetical reference valve that exhibits an extreme amount of
fluttering. In addition to making the assessment of heart valves
faster, more precise, and more reproducible, our approach also
describes the valves more comprehensively than the current
manual method. We have so far validated our algorithms on five
sequences. As the image data are acquired in the carefully con-
trolled test bed environment, we do not expect the quality of the

orifice segmentation results to vary significantly when more data
become available. Currently, our algorithms and criteria are be-
ing applied in medical routine. We will report on more validation
results as well as potential refinement of the parameters, such as
the band edges of the high-pass filters, in the near future. Another
possibility—suggested by one reviewer—to further develop this
method is to evaluate several valve cycles, rather than only one,
and to average the resulting measurements over the cycles.

As of now, we have applied these methods to assess the quality
of heart valves with three leaflets. This category includes the
aortic, the pulmonary, and the tricuspid valves. However, we
believe that these methods can also be used for bicuspid valves,
thus constituting a tool for heart valve analysis in general.
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