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Abstract. The separation of convolutive mixed signals can be carried
out in the time-frequency domain, where the task is reduced to multiple
instantaneous problems. This direct approach leads to the permutation
and scaling problems, but it is possible to introduce an objective function
in the time-frequency domain and minimize it with respect to the time
domain coefficients. While this approach allows for the elimination of
the permutation problem, the unmixing filters can be quite distorted
due the unsolved scaling problem. In this paper we propose a method for
equalization of these filters by using the scaling ambiguity. The resulting
filters have a characteristic of a Dirac pulse and introduce less distortion
to the separated signals. The results are shown on a real-world example.

1 Introduction

The blind source separation method (BSS) is used to recover signals from ob-
served mixtures. It is called blind as neither the original signals nor the mixing
system is known. For the instantaneous case, different methods have been pro-
posed [2,6,4]. In the case of real world acoustic mixtures of speech the situation
is more complicated, as the signals arrive multiple times with different lags. This
behavior can be modeled using FIR filters, but for realistic scenarios the length
can reach several thousand taps. In this case, the separation can be performed
only using filters with similar lengths.

An often used approach is the transformation to the time-frequency domain
where the convolution becomes a multiplication [18]. This allows the use of
instantaneous methods in each frequency bin independently. The major draw-
back is the arbitrary permutation in each frequency bin which has to be cor-
rected, or the whole process fails. Although different methods have been proposed
[15,3,10,16,19,14], the correction can not be calculated reliable in all cases.

The unmixing filters can be calculated directly in the time domain [5,1] but
these algorithms suffer from high computational costs. In [13] an alternative
method has been proposed, where the objective function is formulated in the fre-
quency domain and minimized with respect to the time coefficients. This method
combines the effectiveness of the frequency domain approaches with the absence
of the permutation problem of the time domain methods. However, the scaling
in the different frequencies is not addressed and therefore quite arbitrarily. This
leads to coloration and added reverberation in the separated signals.
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The postfilter-method in [7] tries to recover the signals as they have been
recorded at the microphones and thus accepts all filtering done by the mix-
ing system without adding new distortions. In [9], with the minimal distortion
principle, a similar technique has been proposed.

New approaches as proposed in [11] and [12] solve the scaling problem with
the aim of filter shortening or shaping. The methods of [11] and [12] use the
instantaneous separation in the time-frequency domain as in [18] and allow for
a simple calculation of the scaling coefficients. As these approaches are able to
enhance the separation performance and reduce the reverberation at the same
time, we propose to use these methods in combination with the algorithm from
[13]. As this algorithm calculates only time domain unmixing coefficients the cal-
culation of the scaling coefficients has to be modified. In this paper we will show
how to calculate the scaling coefficients in this setup and apply an equalization
method. The results will be shown in a real world example.

2 Problem Statement

The mixing system of real-world acoustic scenarios is convolutive and can be
described using FIR filters of length L where L can reach several thousand.
With N sources and N mixtures, the source vector s(n) = [s1(n), . . . , sN (n)]T ,
and negligible measurement noise, the observation signals are given by

x(n) = H(n) ∗ s(n) =
L−1∑

l=0

H(l)s(n − l) (1)

where H(n) is a sequence of N ×N matrices containing the impulse responses of
the mixing channels. For the separation, we use FIR filters of length M ≥ L− 1
and obtain

y(n) = W(n) ∗ x(n) =
M−1∑

l=0

W(l)x(n − l) (2)

with y(n) = [y1(n), . . . , yN (n)]T being the vector of separated outputs and W(n)
containing the time domain unmixing coefficients. Fig. 1 shows the scenario for
two sources and sensors. The overall system is given by

y(n) = W(n) ∗ H(n) ∗ s(n) = G(n) ∗ s(n), (3)

which reduces to a multiplication in the time-frequency domain:

Y (ω, τ) ≈ W (ω)H(ω)S(ω, τ) = G(ω)S(ω, τ). (4)

The only sources of information for estimating W(n) are the statistical prop-
erties of the observed signals x(n). Using the time-frequency approaches the
overall system can only be estimated up to an arbitrary order and scaling:

G(ω) = P (ω)D(ω) (5)
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Fig. 1. BSS model with two sources and sensors

with P (ω) being a permutation matrix and D(ω) an arbitrary diagonal matrix.
For a successful separation the permutation matrices P (ω) have to be the same
at all frequencies. All matrices D(ω) which are not the identity introduce filtering
to the separated signals.

3 Blind Separation Algorithm

The method from [13] does not suffer from the previously addressed permutation
problem. This is achieved by using the integrated Kullback-Leibler divergence in
the frequency domain as the objective function and minimizing it with respect
to the time-domain matrices W(n). The update rule reads

Wl+1(n) = Wl(n) − μ
∂f(W)
∂Wl(n)

(6)

with l being the iteration index, f(·) the integrated Kullback-Leibler divergence
and W = [W(0),W(1), . . . ,W(M − 1)]. The gradient is calculated in [13] as

∂f(Wl)
∂Wl(n)

=

π∫

−π

[I − D−1(l, ω)P (l, ω)]W l(ejω)ejωndω (7)

where
D(l, ω) = diag

(
[σr1

1 (l, ω), ..., σrN

N (l, ω)]T
)

(8)

and
P (l, ω) = Y r−1(l, ejω)Y H(l, ejω), (9)

Yr−1(l, ejω) =
[∣∣Y1(l, ejω)

∣∣r1−1
ejθ(Y1(l,e

jω)), ...

...,
∣∣YN (l, ejω)

∣∣rN−1
ejθ(YN (l,ejω))

]T (10)

with Yi(ejω) being the short-time Fourier transforms of yi(n), i = 1, 2, . . . , N
and

σrp
p (l, ω) = βσrp

p (l, ω) + (1 − β)
∣∣yp(l, ejω)

∣∣rp
. (11)
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The parameter β with 0 < β < 1 is a moving-average parameter, and rp is the
order of an assumed generalized Gaussian source model.

This method is able to separate real-room recordings as it is capable of dealing
with long filters, but it suffers from linear distortions which are introduced by
the unmixing filters. A new method for resolving this problem will be presented
in the next section.

4 Resolving the Scaling Ambiguity

A commonly used method for solving the scaling ambiguity is the minimal dis-
tortion principle (MDP) as proposed in [9]. The frequency unmixing matrices
are calculated as

W ′(ω) = dg(W−1(ω)) · W (ω) (12)

with dg(·) returning the argument with all off-diagonal elements set to zero. In
conjunction with the BSS algorithm presented in the last section there are two
possibilities of employing it. The simple way is to carry out the iteration as in
equation (6) and after convergence, transform the filters to the frequency domain
by the Discrete Fourier Transform (DFT) where (12) can be carried out for all
frequencies. The time-domain filters are then obtained by the inverse DFT. A
better approach is to apply the MDP after every step of (6). As it will be shown
in the simulations section, this method is able to greatly enhance the separation
performance.

Both methods yield filters that have quite arbitrary form. Besides the main
peak the filters have lots of large coefficients, which leads to coloration and
reverberation in the separated signals. For reducing this coloration we propose to
adapt the method from [12]. For this, it needs to be changed from a frequency by
frequency method to an algorithm in which all frequencies are processed jointly.
The time domain unmixing filters wij can be calculated in the dependency of
the scaling coefficients cj = [cj(ω0), . . . , cj(ωK−1)]T as

wij = F̄ · Eij · B · cj

= V ij · cj

(13)

with
Eij = diag([R(Wij)I(Wij)] (14)

being a diagonal matrix of the frequency domain unmixing coefficients with
separated real and imaginary parts. As the resulting filters wij and the scaling
coefficients cj are real, it is possible to take advantage of the symmetry properties
of the DFT. With M being the length of wij there are only K = M/2+1 scaling
coefficients. F̄ is obtained from the (M ×M)-IDFT matrix F by concatenation
of the real and imaginary parts such that the multiplication with Eij is real
again. Finally, B consists of concatenated identity matrices and is responsible
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Table 1. Comparison of the signal-to-interference ratios in dB and the distortions
measured by the SFM

Left Right Overall SFM

MDP (1) 2.85 7.37 5.77 0.32

MDP (2) 8.26 8.88 8.75 0.33

New Alg. 9.91 12.10 11.46 0.80

for aligning the scaling coefficients to both the real and imaginary parts of the
transformation matrices.

The scaling factors cj(ω) have to be calculated for all filters belonging to the
same output j simultaneously. This can be achieved by stacking V ij into V̄ j

and minimizing
||w̄jV̄ j − cj ||�2 (15)

where w̄j is the vertical concatenation of some desired filters. For the proposed
equalization, these desired filters wij are defined to consist of zeros and have a
single one at the position where the corresponding wij have the main peak when
calculated using the MDP. The solution is given by cj = V̄ +

j w̄j, with V̄ +
j being

the pseudoinverse of V̄ j .

5 Simulations

Simulations have been done on real-world recordings of eight seconds of speech
sampled at 16 kHz. The length of the unmixing filters was M = 1024. As single
contributions of signals at the microphones are available, the separation perfor-
mance can be calculated as in [17]. The coloration done by the unmixing system
is measured in the terms of spectral flatness measure (SFM) [8]. With SFM be-
ing one a filter is an all-pass and does not color the signals. A value near zero
indicates very strong distortions.

The separation was successful and no permutation occurred. The results after
applying the normalization after convergence are shown in the first line of Ta-
ble 1. The separation performance is quite poor and with an average SFM = 0.32
the signals are colorated. Applying the normalization in every step enhances the
separation performance, but the coloration is still the same. In the last line of
Table 1 the results for the equalized filters are shown. The new algorithm is able
to enhance the separation performance even more and the coloration is reduced.
With an average SFM = 0.80 the filters have a lot more all-pass characteristic
which also can be seen in the Figs. 2 and 3 where the filter set before and after
equalization is compared. The main peak has been enhanced, while the other
coefficients are scaled down. The energy of these coefficients has been reduced
by approximately 10 dB.
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Fig. 2. Comparison of filter sets using the minimal distortion principle (left) and the
new method (right)
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Fig. 3. Magnitudes of filters designed via the minimal distortion principle (left) and
the new method (right)
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6 Summary

In this paper, we have proposed to use the scaling ambiguity of convolutive blind
source separation for equalization of the unmixing filters. We calculated a set of
scaling factors that lead to unmixing filters with a more all-pass characteristic.
This leads to less coloration of the separated signals and enhanced separation
performance. The algorithm has been tested on a real-world example.
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