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Abstract

In this paper, we propose a method for intrusion de-
tection in a video surveillance scenario. For this pur-
pose, we train a conditional random field (CRF) on
features extracted from a video stream. CRFs estimate
a state sequence, given a feature sequence. To detect
intrusions, we analyze this state sequence. CRFs are
usually trained in a supervised manner. Here, we espe-
cially propose a new training algorithm for CRFs based
on expectation maximization, which can be used with
unlabeled data. We apply the resulting trained CRF
to separate normal activities from suspicious behavior.
We have successfully tested our algorithm on 169 se-
quences.

1 Introduction

Automated video surveillance is a fundamental task
for security applications. Assume following scenario.
A camera monitors an enclosed areal. A perpetrator
attempts to conduct an unallowed activity. We are sup-
posed to design a system that detects such unallowed
activities. The perpetrator attempts to deceive the sys-
tem by conducting this activity in such a way that it
appears similar to an allowed one. The only difference
is that the concealed unallowed activity takes longer
(or shorter) than the allowed activity which it imitates.
Therefore the system would detect the allowed activ-
ity for a longer (or shorter) than usual period of time.
This unallowed activity is embedded in a sequence of
allowed activities, hence it is not trivial to detect the
unallowed one.
With motion detectors, we cannot separate an al-

lowed activity from an unallowed one. Hence, we need
to use better automated methods to separate the ac-
tivities.
In the automated surveillance, we have the problem

that the activities we want to detect, most importantly
intrusions, are not well defined. Also a potential in-
truder will act “normal”. However, he will usually do
so for a protracted time. For example, if he uses a
special tool to open the door, it will take considerably
longer time to do so than using a normal key. In this
paper, we therefore concentrate on the description of
the normal behavior rather than the direct modeling
of the suspicious behavior, and detect differences from
the normal behavior. We call this task “event detec-
tion” and the situations when we want to react are
named “events”. Everything else is called the “normal
case”.
An example algorithm can be found in [4]. However,

that method is based on linear predictors. Using lin-
ear predictors can be inappropriate for our problem. In

principle, an event that we can detect can either be a
different measurement (that is, we can detect the event
instantaneously using a single frame by some arbitrary
measure) or a context based difference where an event
is visible by considering sequences of frames, or a com-
bination of both. The first case is often called salience
detection [1, 9]. In this paper, we concentrate on the
context based differences. The context based differ-
ences are more useful if we assume that the observed
person tries to obfuscate his actions and therefore im-
itates a person who acts normal. The algorithm in [4]
and also the one in [5] concentrate on the differences
in the measurements, hence they are no alternatives to
our algorithm.

We train a conditional random field (CRF) [3] on
features we extract from videos which include normal
case activities only. We use CRFs because they are
data-driven models which are based on the principal
of maximum entropy [3, 6] and therefore apply mini-
mal assumptions on the features. Further, they have
proven to be superior in a great variation of tasks [3, 2],
so they are an interesting algorithm for our problem.

A trained CRF generates a state sequence that is
conditioned on the given data. This is a difference to
many other models based on the Markov theory like
hidden Markov models [8], which assume the measure-
ments to be conditionally dependent on the state se-
quence. This difference allows us to avoid modeling
the distribution of the features in a direct manner.

A problem with the usual training of CRFs is that
it needs a labeled training dataset. That is, for each
activity in the training data, we should have a corre-
sponding state [3, 2]. During training, the parameters
of the CRF can then be adapted such that the state
sequence the CRF generates is equal to the given train-
ing state sequence. Because prelabeling of the training
data can be expensive, we have developed a new unsu-
pervised training algorithm based on Expectation Max-
imization (EM) [7]. Events are detected as a result of
a statistical analysis of the state sequence generated by
the CRF.

The rest of the paper is structured as follows. In
Section 2, we first discuss the features we extract from
the video streams. We then discuss the EM CRF train-
ing algorithm and the statistical analysis of the state
sequences for the purpose of event detection. In Sec-
tion 3, we demonstrate our algorithm on an exemplary
video surveillance scenario. In Section 4, we give a
summary and outlook of the proposed method.
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2 Conditional Random Fields for Intrusion
Detection

CRFs are feature dependent Markov models, linear
chain CRFs are therefore Markov chains [3]. Given
a feature sequence, linear chain CRFs give the prob-
abilities of a corresponding state sequence. It is also
possible to determine the probability of each state at
each time step.
In the following, we discuss the features we extract

from the video stream. We train a linear chain CRF on
these features in an unsupervised manner, as discussed
afterwards. We further apply a statistical analysis of
the states sequence. This analysis we discuss in Sec-
tion 2.3.

2.1 Feature Extraction

To extract features from the video streams, we use
an adaptive yet simple foreground extraction algorithm
[4]. Assume the frames Fn, n = 0, 1, 2, . . . are images
with Fn : {(i, j)|1 ≤ i ≤ M1, 1 ≤ j ≤ M2} → [0, 1]3,
where M1 ×M2 is the resolution, and Fn

ij is a pixel of
Fn at the coordinates (i, j). From the first n0 frames
F0,F1,F2, . . . ,Fn0 where no person is located in the
visible area, we initialize a background model Bn0 as
the mean of the initial frames. Further, we initialize a
threshold with Tn0

ij = 1 for each pixel with coordinates

(i, j). We then compute the foreground In for each
n > n0 by

Inij = [[||Fn
ij −Bn−1

ij ||2 > Tn−1
ij ]],

where [[P ]] is 1 if the predicate P is true and 0 else. The
background image and the thresholds are then adapted
by

Bn
ij =

{
Bn−1

ij if Inij = 1

αFn
ij + (1− α)Bn

ij else,

Tn
ij =

⎧⎪⎨
⎪⎩

Tn−1
ij if Inij = 1

α(||Fn
ij −Bn−1

ij ||2 + Toff )

+(1− α)Tn−1
ij

else,

where Toff > 0 is a parameter to suppress noise (in
our experiments, Toff = 0.25). The features we use
are

x(n) =
[[
Inij
]M1

i=1

]M2

j=1
,

the vector representation of the foreground images. We
use this algorithm rather than a more sophisticated
tracking algorithm due to its simplicity and few as-
sumptions about the form of the observed object. Fur-
ther, in our experiments in Section 3, this algorithm
has shown to be sufficient. An example of the video
stream and the extracted foreground can be found in
Figure 1.

2.2 Unsupervised Training of CRFs

CRFs are usually trained in an supervised manner
[3, 2]. However, we do not want to pre-label the fea-
ture vectors which is necessary if we apply an observed
training algorithm, because we believe that a blind and
unsupervised training algorithm is more practical for
our surveillance scenario.

A linear chain CRF computes the probability of a
state sequence S = s(1), s(2), . . . , s(N), given a se-
quence of features vectors X = x(1),x(2), . . . ,x(N).
We have discussed the feature vectors in Section 2.1.
We assume K different states, that is, for each n with
1 ≤ n ≤ N , s(n) ∈ {ζ1, ζ2, . . . , ζK} where ζi is a pos-
sible state. Our training algorithm determines the dif-
ferences of the possible states, their properties and the
transition probabilities.

The definition of a linear chain CRF is as follows.
Given the feature sequenceX, the probability of a state
sequence S (see [3]) is given by

p(S|X;λ) = 1
Zλ(X) exp

(
N∑

n=1

K∑
k=1

λ�k ϕk (s(n),x(n))

)

× exp

(
N∑

n=1

K∑
j,k=1

λjkϕjk(s(n− 1), s(n))

)
(1)

where λ = {λi, λjk} with i, j, k = 1, 2, . . . ,K is the set
of the parameters for the CRF, Zλ(X) is a normaliza-
tion constant such that p(S|X;λ) is a probability, and

ϕk(s(n),x(n)) = [[s(n)]] · x(n),
ϕjk(s(n− 1), s(n)) = [[s(n− 1) = ζj ]] · [[s(n) = ζk]].

Note that λk is actually a vector of the length of the fea-
ture vectors, and λjk is a scalar value. λ is calculated
in the training phase. We can train the CRF using gra-
dient based optimization applied to the log-likelihood
of the CRF.

We train the CRF in an EM-like algorithm. The EM
algorithm we use here consists of two steps, the E step
where we estimate a state sequence, and the M step
where we optimize the parameters to the estimated
sequence. Doing this several times iteratively leads
to a locally optimal solution [7]. We set up the EM
algorithm such that the CRF does not degenerate, that
is, all possible states can be generated by the CRF if
we provide the respective feature sequences, and the
training data provides data for all possible states. We
therefore control the state entropy, which is the entropy
over the occurrence frequency of the possible states in
a state sequence.

In the initialization of the EM algorithm, we set λ at
random. In the E step, a state sequence is estimated
by

s̃(n) = arg max
s(n)

p̃(s(n)|X, s(n− 1), s(n+ 1);λ) (2)

with p̃ as the probabilities of one state in the state
sequence divided by the sum of the probability of this
very state in the whole sequence,

p̃(s(n) = ζk|X, s(n− 1), s(n+ 1);λ)

=
p(s(n) = ζk|X, s(n− 1), s(n+ 1);λ)∑N
n=1 p(s(n) = ζk|X, s(n− 1), s(n+ 1);λ)

.

After the E step, we perform the M step. In the
M step, we maximize the log-likelihood of the state se-
quence S̃ = s̃(1), s̃(2), . . . using gradient ascend. We
do not use optimization algorithms with higher order
because due to the new state sequence in each itera-
tion, the location of the unique optimum for the CRF
[6, 3, 2] changes, and we do not want to over-adapt
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(a) Example Image (b) Foreground Features

Figure 1. An example image from the experiments (a), and the extracted features (b).

to a temporary state sequence. The gradient of the
log-likelihood of a state sequence, given the feature se-
quence, is

∇λk
log(p(S̃|X;λ)) =−∇λk

log(Zλ(X))

+
N∑

n=1
ϕk(s̃(n),x(n))

(3)

∇λjk
log(p(S̃|X;λ)) =−∇λjk

log(Zλ(X))

+
N∑

n=1
ϕjk(s̃(n− 1), s̃(n)),

(4)

where ∇λk
log(Zλ(X)) =

∑N
n=1 E[ϕk(s,x(n));λ] and

∇λjk
log(Zλ(X)) =

∑N
n=1 E[ϕjk(s1, s2);λ]. Here E

is the expected value, given the actual parameters λ.
s, s1, s2 are the random variables whose distribution is
given by the CRF. For details and derivation, see [2].
We use constrained optimization to avoid overfitting

and to increase the state entropy. The constraints are

M∑
i=1

λj(i) = 0, j = 1, 2, . . . ,K, (5)

M∑
i=1

(λj(i))
2 = 1, j = 1, 2, . . . ,K, (6)

K∑
k=1

λjk = 0, j = 1, 2, . . . ,K, (7)

K∑
k=1

(λjk)
2 = 1, j = 1, 2, . . . ,K., (8)

where M is the number of features. The constraints
(5) and (6) control the weighting vectors λk which are
related to the feature vectors, see (1). Constraint (5)
decreases the iterations needed in the EM algorithm.
It can be interpreted as a specialization of each state
to a single action. The constraint (6) is set to avoid
overfitting. The constraints (7) and (8) have similar ef-
fects on the transition probabilities. This is a different
regularization than in most CRF algorithms and keeps
the state entropy as high as possible while adapting
the CRF to a temporary state sequence.

With these constraints, we perform one step of the
gradient ascend optimization. After this, we start
again with the E step, using the new λ to generate
a new state sequence. After several iterations, we get

a locally optimal solution λ̂ which is sufficient for our
surveillance problem.
Using the trained model, we calculate a state

sequence for the feature sequence X with Ŝ =

arg max
S

p(S|X; λ̂). This is a sequence of automatically

learned states and describes the activities in the visible
area.

2.3 Statistical Analysis of the State Sequence

In the last section, we discussed an EM algorithm to
train a CRF on features extracted from video streams.
However, because we discuss video streams, actions are
observable for several consecutive frames. Hence, in a
state sequence, the same state appears repeatedly. To
detect the events, we therefore measure the length of
each time window defined over these repetitions (seg-
ments). If the probability of the actual length is low,
assuming a normal action, we have detected an event.
Thus, we are able to detect events, even though the ob-
served person tries to obfuscate his unallowed activity.
To calculate the likelihood of the length of the actual

segment, we train a Gaussian Mixture Model (GMM)
on the lengths of the segments in the training data.
In the inference, if the likelihood of the length of a
segment is low, we say we have detected an event.

3 Experiments and Discussion

We have set up a camera in a floor, monitoring a door
to an adjacent room, and we measure 30 frames per
second. For speedup, we reduced the native resolution
of 640× 480 to M1 ×M2 = 32× 32.
The scenario we use is as follows. Normally, a per-

son is passing the door, locking and unlocking the door,
entering and leaving the room or looking into the room
through a window, see Figure 1. This scenario we have
set up to simulate usual activities of a watchman. For
the event, we assume an intruder who breaks into the
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Figure 2. Receiver Operation Characteristic
(ROC) of the proposed method. The ROC is the
plot of the probability to correctly detect an event
against the probability of a false alert, using a
varying threshold.

observed room. The CRF was trained on the normal-
case data only. The activities of the intruder we as-
sume in our scenario are performed by the same person.
Hence, we are sure that detected suspicious behavior is
based on his activities only, not on personal differences
to the watchman.
We have 153 normal case video sequences where the

observed person behaves like a watchman. Further, we
have 16 event-case video sequences. We have chosen
this difference between the number of normal-case and
event videos because of two reasons. First, the events
are by default rare actions but have, in real scenarios,
many variations. More event videos would increase the
redundancy of the events only, which is not a realistic
scenario. Second, the more difficult part is to avoid
false alerts, so we need a higher number of the normal
case videos for our evaluation of the proposed method.
The original data is available for download.1

We have trained on 60% of the normal case videos.
We have tested the number of states K between 3 and
20. A high value of K results in very short segments, a
low value decreases the possible complexity of the nor-
mal case. K = 6 is a trade-off between the lengths of
the usual actions and their complexity. For the lengths
of the segments, we train GMMs with ten modes. The
exemplary Receiver Operating Characteristics (ROCs)
can be seen in Figure 2. Due to the high detection
rate of the events, considering a low false alert rate,
we rate our experiments as a success. Note that even
in the event sequences, several segments can be, by
themselves, considered be be normal (for example, if a
person enters the visible area, we cannot decide if he
will act normal or abnormal in the beginning). Hence,
a part of the event videos consists of normal activities,
and higher detection rates cannot be expected.

4 Summary and Outlook

We have proposed an automated system for video
surveillance, based on CRFs. The method has shown

1http://www.isip.uni-luebeck.de/downloads

to be capable of detection of unprecedented activities,
like intrusions.

Our system learns the actions without prelabeling,
which is an advantage in this setting, because the ap-
plication is simpler. Further, we do not make assump-
tions on the activities performed in the visible area.
Therefore, we can apply this system for many other
observation problems.

The test for the lengths of the segments is a simple
yet effective method for the detection of the events
in this scenario. Differences in measurements of single
frames are less likely to be detected, because a intruder
would try to avoid unlikely behavior.

In the future, we plan to adapt the algorithm to on-
line training. That is, we even do not record a training
sequence, but the model is trained while recording the
features.

Further, we can include the capability to detect
strange measurements that are related to unprece-
dented actions. An example of this event detection
can be found in [5]. That method can be incorporated
in our method using more sophisticated features. How-
ever, a more complex scenario has to be set up for the
necessity of this adaption. For the surveillance sce-
nario, our method has shown to be sufficient.
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